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Section 6: Irreducibility and Roots of Polynomials

HW p. 14 # 1-17 at the end of the notes
In this section, we discuss when polynomials are irreducible and discuss the relation between the roots of polynomials and their roots.
Irreducibility of Polynomials

Recall that for a ring R with unity 
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. For certain polynomial rings, only a small class of polynomials are units, as the next theorem indicates.
Theorem 6.1: Let F be a field. Then 
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Facts From Theorem 6.1
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The theorem shows that rings such as 
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Definition 6.2: For a field F, a polynomial 
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 (there are an infinite number of associates for this ring). However, for some rings, there are only a finite number of associates. For example, for the ring 
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Example 1: List all of the associates for 
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This allows us to make the following statement:
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Recall that for the integers 
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Now if p is prime in Z, its only divisors are its units 
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 and its associates. A similar analogy can be give for polynomials.
Definition 6.3: For a field F, a non-constant polynomial 
[image: image51.wmf]]

[

)

(

x

F

x

p

Î

 is said to be irreducible of its only divisors are the constant polynomials (the units of 
[image: image52.wmf]]

[

x

F

) and its associates (polynomials of the form 
[image: image53.wmf])

(

x

cp

, where c is a non-zero constant in F). If 
[image: image54.wmf])

(

x

p

 is not irreducible, it is said to be reducible over F.
Another way to define irreducibility is as follows. Since for a polynomial 
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 to be irreducible, we know that its divisors can only be its units or its associates, the degrees of its divisors can only be zero or the same as itself. Thus, we can make this statement:
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Fact: Every polynomial of degree 1 in 
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Note: A polynomial that is irreducible over a field F may not irreducible over a larger field containing F.

For example, 
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There are other conditions concerning irreducibility of polynomials that are equivalent. The next theorem summarizes these facts.
Theorem 6.4: Let F be a field and 
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Corollary 6.5: Let F be a field and 
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Theorem 6.6: Let F be a field. Then every non-constant polynomial 
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Roots of Polynomials and Reduciblity
To determine if a polynomial is irreducible or reducible, we can examine the roots of the polynomial. To demonstrate, we begin with the following definition.

Definition 6.7: Let R be a commutative ring with 
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Example 2: Find the roots of 
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Example 3: Find the roots of 
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As these examples demonstrate, there is a relation between the zeros of a polynomial and its factors, which is summarized in the following theorem.

Theorem 6.8:  (Factor Theorem): For a field F, an element 
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Example 5: Determine if 
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Corollary 6.9: A non-zero polynomial 
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Example 6: Factor 
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Corollary 4.10: Let F be a field and 
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[image: image204.wmf])

(

x

f


can have no roots in F.
(2) If 
[image: image205.wmf])

(

x

f

 is irreducible, it cannot have a linear factor of degree 1 of the form 
[image: image206.wmf]a

x

-

. Suppose 
[image: image207.wmf])

(

)

(

)

(

x

s

x

r

x

f

=

. If 
[image: image208.wmf])

(

x

f

 is of degree 2 and is reducible, then 
[image: image209.wmf])

(

x

f

 must be the product of two linear one degree polynomials, which is impossible. If 
[image: image210.wmf])

(

x

f

 is of degree 3 and is reducible, then 
[image: image211.wmf])

(

x

f

 must be the product of a second degree irreducible quadratic and a first degree linear factor or three first degree linear factors. This is impossible. Hence, either 
[image: image212.wmf])

(

x

r

 or 
[image: image213.wmf])

(

x

s

must be of degree 0, or must be non-zero constants. Thus, 
[image: image214.wmf])

(

x

f

 is irreducible.
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Note: Part 2 of Corollary 4.10 is not necessarily true if 
[image: image215.wmf]4

)

(

deg

³

x

f

. For example, the polynomial 


[image: image216.wmf])

3

)(

2

(

6

5

)

(

2

2

2

4

-

-

=

+

-

=

x

x

x

x

x

f

.
is reducible in 
[image: image217.wmf]]

[

x

Q

 even though there are no roots in Q.
Example 7: Determine if 
[image: image218.wmf]3

2

)

(

2

+

+

=

x

x

x

f

 is an irreducible polynomial of 
[image: image219.wmf]]

[

7

x

Z

. If not, factor the polynomial as a product of irreducible factors.
Solution: 













█

Example 8: Determine if 
[image: image220.wmf]2

)

(

3

+

=

x

x

f

 is an irreducible polynomial of 
[image: image221.wmf]]

[

5

x

Z

. If not, factor the polynomial as a product of irreducible factors.

Solution: 
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Exercises
1. 
Find a monic associate of


a. 

[image: image222.wmf]1

4

3

5

2

3

-

+

+

x

x

x

 in 
[image: image223.wmf]]

[

x

Q

.

b. 
[image: image224.wmf]1

4

2

3

2

2

3

4

+

+

+

+

x

x

x

x

 in 
[image: image225.wmf]]

[

5

x

Z

.

2.
List all of the associates for the following of

a.

[image: image226.wmf]1

2

+

+

x

x

 in 
[image: image227.wmf]]

[

2

x

Z

.


b.

[image: image228.wmf]1

2

+

+

x

x

 in 
[image: image229.wmf]]

[

5

x

Z

.


c.

[image: image230.wmf]5

6

2

4

2

3

+

+

+

x

x

x

 in 
[image: image231.wmf]]

[

7

x

Z

.

3.
For a prime p, show that a non-zero polynomial in 
[image: image232.wmf]]

[

x

Z

p

 has exactly 
[image: image233.wmf]1

-

p

 associates.
4.
Determine if 
[image: image234.wmf])

(

x

h

 is factor of 
[image: image235.wmf]:

)

(

x

f



a. 

[image: image236.wmf]2

)

(

+

=

x

x

h

 and 
[image: image237.wmf]12

4

3

)

(

2

3

-

-

-

=

x

x

x

x

f

 in 
[image: image238.wmf]]

[

R

x

.


b.

[image: image239.wmf]2

1

)

(

-

=

x

x

h

 and 
[image: image240.wmf]4

3

2

)

(

3

4

-

+

+

=

x

x

x

x

f

 in 
[image: image241.wmf]]

[

x

Q

.


c.

[image: image242.wmf]2

)

(

+

=

x

x

h

 and 
[image: image243.wmf]1

2

2

4

3

)

(

2

3

4

5

+

+

-

+

+

=

x

x

x

x

x

x

f

 in 
[image: image244.wmf]]

[

5

x

Z

.


d.

[image: image245.wmf]3

)

(

-

=

x

x

h

 and 
[image: image246.wmf]5

)

(

3

6

-

+

-

=

x

x

x

x

f

 in 
[image: image247.wmf]]

[

7

x

Z

.

5.
For what value of k is 
[image: image248.wmf]1

-

x

 a factor of 
[image: image249.wmf]k

x

x

x

x

+

+

+

-

3

5

5

2

3

4

 in 
[image: image250.wmf]]

[

x

Q

.

6.
For what value of k is 
[image: image251.wmf]1

+

x

 a factor of 
[image: image252.wmf]1

3

2

2

3

4

+

+

-

+

kx

x

x

x

 in 
[image: image253.wmf]]

[

5

x

Z

.
7.
Show that 
[image: image254.wmf]1

-

x

 divides 
[image: image255.wmf]]

[

)

(

0

1

1

1

x

F

a

x

a

x

a

x

a

x

f

n

n

n

n

Î

+

+

+

+

=

-

-

K

 if and only if 
[image: image256.wmf]0

0

1

1

=

+

+

+

+

-

a

a

a

a

n

n

K

.

8.
Determine if the given polynomials are irreducible.


a.

[image: image257.wmf]5

2

-

x


in 
[image: image258.wmf]]

[

x

Q

.


e. 
[image: image259.wmf]9

3

-

x

 in 
[image: image260.wmf]]

[

11

x

Z

.



b.

[image: image261.wmf]5

2

-

x


in 
[image: image262.wmf]]

[

R

x

.


f. 
[image: image263.wmf]2

2

2

2

3

+

+

+

x

x

x

 in 
[image: image264.wmf]]

[

5

x

Z

.

c.

[image: image265.wmf]3

3

-

x

 in 
[image: image266.wmf]]

[

7

x

Z

.


g. 
[image: image267.wmf]1

2

4

+

+

x

x

 in 
[image: image268.wmf]]

[

3

x

Z

.

d.

[image: image269.wmf]2

2

+

x

 in 
[image: image270.wmf]]

[

5

x

Z

.
9.
The following polynomials can be factored into linear factors over the given field. Find their polynomials.

a.

[image: image271.wmf]4

4

+

x

 in 
[image: image272.wmf]]

[

5

x

Z

.


b.

[image: image273.wmf]1

2

2

2

3

+

+

+

x

x

x

 in 
[image: image274.wmf]]

[

7

x

Z

.


c.

[image: image275.wmf]5

7

3

2

2

3

-

-

+

x

x

x

 in 
[image: image276.wmf]]

[

11

x

Z

.

10. Determine if the following polynomials are irreducible over the given field. If not, 
factor the polynomial as a product of irreducible factors.

a.

[image: image277.wmf]3

2

3

+

+

x

x

 in 
[image: image278.wmf]]

[

5

x

Z

.

b.

[image: image279.wmf]2

2

2

2

3

+

+

+

x

x

x

 in 
[image: image280.wmf]]

[

5

x

Z

.

c.

[image: image281.wmf]3

3

+

x

 in 
[image: image282.wmf]]

[

11

x

Z

.
d.

[image: image283.wmf]4

2

2

2

3

5

+

+

+

x

x

x

 in 
[image: image284.wmf]]

[

11

x

Z

.

11.
Find all irreducible polynomials of


a.
degree  2 in 
[image: image285.wmf]]

[

2

x

Z

.


c. degree 2 in 
[image: image286.wmf]]

[

5

x

Z

.

b.
degree 2 in 
[image: image287.wmf]]

[

3

x

Z

.


d. degree 3 in 
[image: image288.wmf]]

[

2

x

Z

.

12.
For Exercise 9, list all of the monic irreducible polynomials for each case.
13.
If 
[image: image289.wmf]F

b

Î

 is a non-zero root of 
[image: image290.wmf]]

[

0

1

1

1

x

F

a

x

a

x

a

x

a

n

n

n

n

Î

+

+

+

+

-

-

K

, then show 
[image: image291.wmf]1

-

b

 is a root of 
[image: image292.wmf]n

n

n

n

a

x

a

x

a

x

a

+

+

+

+

-

-

1

1

1

0

K

.

14.
a.
If 
[image: image293.wmf])

(

x

f

 and 
[image: image294.wmf])

(

x

g

 are associates in 
[image: image295.wmf]]

[

x

F

, show that they have the same 


roots in F. 

b.
If 
[image: image296.wmf]]

[

)

(

 

),

(

x

F

x

g

x

f

Î

 have the same roots in F, are they associates in 
[image: image297.wmf]]

[

x

F

?

15.
Prove the Remainder Theorem: Let 
[image: image298.wmf]]

[

)

(

x

F

x

f

Î

, where F is a field, and let 
[image: image299.wmf]F

Î

a

. Show that the remainder 
[image: image300.wmf])

(

x

r

 when 
[image: image301.wmf])

(

x

f

 is divided by 
[image: image302.wmf]a

-

x

, in accordance with the division algorithm, is 
[image: image303.wmf])

(

a

f

.
16.
Suppose 
[image: image304.wmf]F

s

r

Î

 

,

 are roots of 
[image: image305.wmf]]

[

2

x

F

c

bx

ax

Î

+

+

 , where 
[image: image306.wmf]0

¹

a

. Use the Factor 


Theorem (Theorem 6.8) to show 
[image: image307.wmf]b

a

s

r

1

-

-

=

+

 and 
[image: image308.wmf]c

a

rs

1

-

=

.
17.
Prove that 
[image: image309.wmf]1

2

+

x

 is reducible in 
[image: image310.wmf]]

[

x

Z

p

, where p is prime, if and only if there exist integers a and b such that 
[image: image311.wmf]b

a

p

+

=

 and 
[image: image312.wmf])

(mod

 

1

p

ab

º

.
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