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Section 7: Modular Arithmetic in F[x] and Congruence Classes
HW p. 11 # 1-15 at the end of the notes
In this section, we look at modular arithmetic concerning polynomials in 
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, where F is a field. We will see that many the properties are similar to how modular arithmetic works over the integers.
Modular Arithmetic in F[x]
Definition 7.1: Let F be a field and 
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Example 1: In 
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Example 2: In 
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Example 3: In 
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Solution: In 
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when simplifying, if 
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. When performing long division, we see that 
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Theorem 7.2: Let F be a field and 
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Proof:  (1) Reflexive: 

(2) Symmetric: Exercise.

(3) Transitive: If 
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Theorem 7.3: Let F be a field and 
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Proof: (1)

Proof: (2) Exercise.
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Definition 7.4: Let F be a field and 
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Example 5: In Examples 3 and 4, we showed that 
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We can now state the following corollary:

Corollary 7.6: Two congruence classes modulo 
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Using the symmetric and transitive property of Theorem 7.2, we can say that 
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Recall that for the integers Z that the congruence 
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Let 
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Corollary 7.7: Let F be a field and 
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Example 7: Consider congruence modulo 
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Exercises
1. 
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