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Section 8: Congruence Class Arithmetic
HW p. 13 # 1-7 at the end of the notes
In this section, we examine how to combine polynomials in different congruence  classes. We start with the following theorem
Modular Arithmetic in F[x]
Theorem 8.1: Let F be a field and 
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Proof: Since 
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Using Theorem 7.5 again, the result follows.
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Example 1: In 
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Theorem 8.1 says that 
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Theorem 8.1 allows us to perform congruence class arithmetic and get the same result no matter which polynomial we use to represent the congruence class. We can now give the following definition to define this arithmetic.
Definition 8.2: Let F be a field and 
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Example 2: Compute 
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Example 3: Determine the rules for addition and multiplication of the congruence classes for 
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Example 4: Write an addition and multiplication table for the congruence classes of 
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Theorem 8.3: Let F be a field and 
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A subring is a subset S of a ring R that is itself a ring under the operations of addition and multiplication. To prove that a subset of a ring is a subring, one only need to prove that (i) the subset S is closed under addition and multiplication, that is, if 
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When two rings are isomorphic, they have the same structure in the sense that addition and multiplication are the same except with the elements of each ring suitably relabeled.  Two rings R and S are isomorphic if there is a function 
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x

p

-

. However, 
[image: image133.wmf])

(

x

p

 is assumed to be non-constant and hence 
[image: image134.wmf]1

)

(

deg

³

x

p

. Since 
[image: image135.wmf]F

b

a

Î

-

 is a constant, 
[image: image136.wmf])

(

|

)

(

b

a

x

p

-

 only if 
[image: image137.wmf]0

=

-

b

a

. Thus 
[image: image138.wmf]b

a

=

 and 
[image: image139.wmf]f

 is one-to-one.
(ii).

[image: image140.wmf]f

 is onto by its definition, that is if 
[image: image141.wmf]*

__

F

a

Î

, then we have 
[image: image142.wmf]F

a

Î

 where 
[image: image143.wmf]__

)

(

a

a

=

f

.

(iii)

[image: image144.wmf]f

 is a homomorphism for both addition and multiplication, since if 
[image: image145.wmf]F

b

a

Î

 

,

, then


[image: image146.wmf])

(

)

(

)

(

__

__

______

b

a

b

a

b

a

b

a

f

f

f

+

=

+

=

+

=

+

.


[image: image147.wmf])

(

)

(

)

(

__

__

____

b

a

b

a

ab

ab

f

f

f

=

=

=


Thus, the set of constant polynomials F and the sent of constant polynomial congruences 
[image: image148.wmf]*

F

 are isomorphic.
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Hence, up to isomorphism, we can say that 
[image: image149.wmf]))

(

/(

]

[

x

p

x

F

 is a commutative ring with identity that contains the field F as a subset. By replacing 
[image: image150.wmf]*

F

 with its isomorphic copy of 
[image: image151.wmf]F

, we have the following theorem.
Theorem 8.4: Let F be a field and 
[image: image152.wmf])

(

x

p

 and a non-constant polynomial in 
[image: image153.wmf]]

[

x

F

. Then 
[image: image154.wmf]))

(

/(

]

[

x

p

x

F

 is a commutative ring with identity that contains F.
Recall that a field F is a commutative ring with identity where every non-zero element in F has a multiplicative inverse (is a unit). That is, if 
[image: image155.wmf]F

a

Î

 and 
[image: image156.wmf]0

¹

a

, then there is a 
[image: image157.wmf]F

a

Î

-

1

 where 
[image: image158.wmf]1

1

=

-

aa

. Depending on the polynomial 
[image: image159.wmf])

(

x

p

 used for the ring 
[image: image160.wmf]))

(

/(

]

[

x

p

x

F

, 
[image: image161.wmf]))

(

/(

]

[

x

p

x

F

 can also be a field.
Example 5: Consider the multiplication table for the field 
[image: image162.wmf])

1

/(

]

[

2

2

+

+

x

x

x

Z

. 

	
[image: image163.wmf]·


	
[image: image164.wmf]0


	
[image: image165.wmf]1


	
[image: image166.wmf]__

x


	
[image: image167.wmf]_____

1

+

x



	
[image: image168.wmf]0


	
[image: image169.wmf]0


	
[image: image170.wmf]0


	
[image: image171.wmf]0


	
[image: image172.wmf]0



	
[image: image173.wmf]1


	
[image: image174.wmf]0


	
[image: image175.wmf]1


	
[image: image176.wmf]__

x


	
[image: image177.wmf]_____

1

+

x



	
[image: image178.wmf]__

x


	
[image: image179.wmf]0


	
[image: image180.wmf]__

x


	
[image: image181.wmf]_____

1

+

x


	
[image: image182.wmf]1



	
[image: image183.wmf]_____

1

+

x


	
[image: image184.wmf]0


	
[image: image185.wmf]_____

1

+

x


	
[image: image186.wmf]1


	
[image: image187.wmf]__

x




Find the multiplicative inverses for the non-zero elements of the table.

Solution: Looking at the table, we can see that all of the non-zero elements have multiplicative inverses. Summarizing, we see that

The multiplicative inverse of 1 is 1 since 
[image: image188.wmf]1

1

1

=

×

.

The multiplicative inverse of 
[image: image189.wmf]__

x

 is 
[image: image190.wmf]_____

1

+

x

 since 
[image: image191.wmf]1

1

 

_____

__

=

+

×

x

x

.

The multiplicative inverse of 
[image: image192.wmf]_____

1

+

x

 is 
[image: image193.wmf]__

x

 since 
[image: image194.wmf]1

 

1

__

_____

=

×

+

x

x

.

Since all of the non-zero elements of 
[image: image195.wmf])

1

/(

]

[

2

2

+

+

x

x

x

Z

 have multiplicative inverses, we see that 
[image: image196.wmf])

1

/(

]

[

2

2

+

+

x

x

x

Z

 is a field that contains the field 
[image: image197.wmf]2

Z

.
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Example 6: Consider the multiplication table for the field 
[image: image198.wmf])

1

/(

]

[

3

2

+

x

x

Z

. 

	
[image: image199.wmf]·


	
[image: image200.wmf]0


	
[image: image201.wmf]1


	
[image: image202.wmf]__

x


	
[image: image203.wmf]_____

1

+

x


	
[image: image204.wmf]___

2

x


	
[image: image205.wmf]_______

2

1

+

x


	
[image: image206.wmf]_______

2

x

x

+


	
[image: image207.wmf]__________

2

1

+

+

x

x



	
[image: image208.wmf]0


	
[image: image209.wmf]0


	
[image: image210.wmf]0


	
[image: image211.wmf]0


	
[image: image212.wmf]0


	
[image: image213.wmf]0


	
[image: image214.wmf]0


	
[image: image215.wmf]0


	
[image: image216.wmf]0



	
[image: image217.wmf]1


	
[image: image218.wmf]0


	
[image: image219.wmf]1


	
[image: image220.wmf]__

x


	
[image: image221.wmf]_____

1

+

x


	
[image: image222.wmf]___

2

x


	
[image: image223.wmf]_______

2

1

+

x


	
[image: image224.wmf]_______

2

x

x

+


	
[image: image225.wmf]__________

2

1

+

+

x

x



	
[image: image226.wmf]__

x


	
[image: image227.wmf]0


	
[image: image228.wmf]__

x


	
[image: image229.wmf]___

2

x


	
[image: image230.wmf]_______

2

x

x

+


	
[image: image231.wmf]1


	
[image: image232.wmf]_____

1

+

x


	
[image: image233.wmf]_______

2

1

+

x


	
[image: image234.wmf]__________

2

1

+

+

x

x



	
[image: image235.wmf]_____

1

+

x


	
[image: image236.wmf]0


	
[image: image237.wmf]_____

1

+

x


	
[image: image238.wmf]_______

2

x

x

+


	
[image: image239.wmf]_______

2

1

+

x


	
[image: image240.wmf]_______

2

1

+

x


	
[image: image241.wmf]_______

2

x

x

+


	
[image: image242.wmf]_____

1

+

x


	
[image: image243.wmf]0



	
[image: image244.wmf]___

2

x


	
[image: image245.wmf]0


	
[image: image246.wmf]___

2

x


	
[image: image247.wmf]1


	
[image: image248.wmf]_______

2

1

+

x


	
[image: image249.wmf]__

x


	
[image: image250.wmf]_______

2

x

x

+


	
[image: image251.wmf]_____

1

+

x


	
[image: image252.wmf]__________

2

1

+

+

x

x



	
[image: image253.wmf]_______

2

1

+

x


	
[image: image254.wmf]0


	
[image: image255.wmf]_______

2

1

+

x


	
[image: image256.wmf]_____

1

+

x


	
[image: image257.wmf]_______

2

x

x

+


	
[image: image258.wmf]_______

2

x

x

+


	
[image: image259.wmf]_____

1

+

x


	
[image: image260.wmf]_______

2

1

+

x


	
[image: image261.wmf]0



	
[image: image262.wmf]_______

2

x

x

+


	
[image: image263.wmf]0


	
[image: image264.wmf]_______

2

x

x

+


	
[image: image265.wmf]_______

2

1

+

x


	
[image: image266.wmf]_____

1

+

x


	
[image: image267.wmf]_____

1

+

x


	
[image: image268.wmf]_______

2

1

+

x


	
[image: image269.wmf]_______

2

x

x

+


	
[image: image270.wmf]0



	
[image: image271.wmf]__________

2

1

+

+

x

x


	
[image: image272.wmf]0


	
[image: image273.wmf]__________

2

1

+

+

x

x


	
[image: image274.wmf]__________

2

1

+

+

x

x


	
[image: image275.wmf]0


	
[image: image276.wmf]__________

2

1

+

+

x

x


	
[image: image277.wmf]0


	
[image: image278.wmf]0



	
[image: image279.wmf]__________

2

1

+

+

x

x




Find the multiplicative inverses for the non-zero elements of the table.

Solution: Looking at the table, we see that only some of the elements in 
[image: image280.wmf])

1

/(

]

[

3

2

+

x

x

Z

 have multiplicative inverses:
The multiplicative inverse of 1 is 1 since 
[image: image281.wmf]1

1

1

=

×

.

The multiplicative inverse of 
[image: image282.wmf]__

x

 is 
[image: image283.wmf]___

2

x

 since 
[image: image284.wmf]1

 

___

2

__

=

×

x

x

.

The multiplicative inverse of 
[image: image285.wmf]___

2

x

 is 
[image: image286.wmf]__

x

 since 
[image: image287.wmf]1

 

__

___

2

=

×

x

x

.

The non-zero elements 
[image: image288.wmf]_____

1

+

x

, 
[image: image289.wmf]_______

2

1

+

x

, 
[image: image290.wmf]_______

2

x

x

+

, and 
[image: image291.wmf]__________

2

1

+

+

x

x

 all have no multiplicative inverse. Thus, 
[image: image292.wmf])

1

/(

]

[

3

2

+

x

x

Z

 is not a field. In fact, 
[image: image293.wmf])

1

/(

]

[

3

2

+

x

x

Z

 is not even and integral domain – the elements 
[image: image294.wmf]_____

1

+

x

, 
[image: image295.wmf]_______

2

1

+

x

, 
[image: image296.wmf]_______

2

x

x

+

, and 
[image: image297.wmf]__________

2

1

+

+

x

x

 are all zero divisors. For example, 
[image: image298.wmf]0

1

 

1

__________

2

_____

=

+

+

×

+

x

x

x

. 
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Example 7: Show that  
[image: image299.wmf])

5

/(

]

[

2

-

x

x

Q

 is a field.

Solution:












█

Example 8: Show that  
[image: image300.wmf])

1

/(

]

[

Q

2

-

x

x

 is not a field.

Solution: To be a field, every non-zero element must have a multiplicative inverse. We will demonstrate an element where the multiplicative inverse does not exist. Consider the element 
[image: image301.wmf]_____

1

-

x

. To find the inverse of this element, we look for a linear congruence of the form 
[image: image302.wmf]]

[

d

cx

+

 where


[image: image303.wmf]__

_______

_____

1

 

1

=

+

-

d

cx

x

.

This gives


[image: image304.wmf]__

_________

__________

2

1

)

(

=

-

-

+

d

x

c

d

cx


We can reduce 
[image: image305.wmf]d

x

c

d

cx

-

-

+

)

(

2

 to find its equivalent congruence representation by finding the remainder of the division of 
[image: image306.wmf]d

x

c

d

cx

-

-

+

)

(

2

 by 
[image: image307.wmf]1

2

-

x

. When this division is performed, we obtain a quotient of 
[image: image308.wmf]c

x

q

=

)

(

 and remainder of 
[image: image309.wmf])

(

)

(

)

(

d

c

x

c

d

x

r

-

+

-

=

. Hence, this gives

[image: image310.wmf]__

_________

__________

1

)

(

)

(

=

-

+

-

d

c

x

c

d


These congruences classes can only be equal if the polynomials that form them are equal. That is, we want

[image: image311.wmf]1

)

(

)

(

=

-

+

-

d

c

x

c

d


or

[image: image312.wmf]1

0

)

(

)

(

+

=

-

+

-

x

d

c

x

c

d

.
Polynomials can be equation only if their corresponding coefficients are equal. This gives the system of equations

[image: image313.wmf]0

=

-

c

d

 and 
[image: image314.wmf]1

=

-

d

c

.

Solving the first equation for d gives 
[image: image315.wmf]c

d

=

. Substituting this result into the second equation gives


[image: image316.wmf]1

=

-

c

c


or


[image: image317.wmf]1

0

=


Hence, no solution exists and hence the element 
[image: image318.wmf]_____

1

-

x

 in 
[image: image319.wmf])

1

/(

]

[

Q

2

-

x

x

 has no multiplicative inverse. Thus, 
[image: image320.wmf])

1

/(

]

[

Q

2

-

x

x

 is not a field.
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Exercises
1.
Perform the following calculations for the following congruence class rings.

a.

[image: image321.wmf]_______

______

7

6

 

3

8

+

+

+

x

x

 and 
[image: image322.wmf]_______

______

7

6

  

3

8

+

×

+

x

x

 in 
[image: image323.wmf])

1

/(

]

[

R

2

+

x

x

.


b. 

[image: image324.wmf]______

_____

2

 

1

+

+

+

x

x

 and 
[image: image325.wmf]______

_____

2

  

1

+

×

+

x

x

 in
[image: image326.wmf])

1

/(

]

[

2

2

+

x

x

Z

.


c. 

[image: image327.wmf]______

______

2

 

1

2

+

+

+

x

x

 and 
[image: image328.wmf]______

______

2

  

1

2

+

×

+

x

x

 in
[image: image329.wmf])

1

/(

]

[

2

3

+

x

x

Z

.


d. 

[image: image330.wmf]_______

______

1

2

 

3

4

+

+

+

x

x

 and 
[image: image331.wmf]_______

______

1

2

  

3

4

+

×

+

x

x

 in
[image: image332.wmf])

2

/(

]

[

2

5

+

x

x

Z

.


e.

[image: image333.wmf]____

2

__________

2

 

1

x

x

x

+

+

+

 and 
[image: image334.wmf]___

2

__________

2

 

1

x

x

x

×

+

+

 in 
[image: image335.wmf])

1

/(

]

[

3

2

+

+

x

x

x

Z

.

2. 
Write out the addition and multiplication tables for the following congruence class rings. In each case, is the ring a field? An integral domain?

a.

[image: image336.wmf])

1

/(

]

[

2

2

+

x

x

Z

.


b. 

[image: image337.wmf])

1

/(

]

[

2

3

+

x

x

Z

.


c. 

[image: image338.wmf])

1

/(

]

[

3

2

+

+

x

x

x

Z

.


d.

[image: image339.wmf])

1

/(

]

[

2

5

+

x

x

Z

.

e.

[image: image340.wmf])

2

/(

]

[

2

5

+

x

x

Z

.
3.
In the following problems, each element of the congruence-class ring can be written in 

the form 
[image: image341.wmf]_______

b

ax

+

.  Determine the rules for addition and multiplication of congruence. classes. That is, if the product 
[image: image342.wmf]_______

_______

 

d

cx

b

ax

+

×

+

 is 
[image: image343.wmf] 

_______

s

rx

+

, describe how to find r and s from a, b, c, and d.
a.

[image: image344.wmf])

1

/(

]

[

R

2

+

x

x

.

b.

[image: image345.wmf])

2

/(

]

[

2

-

x

x

Q


c.

[image: image346.wmf])

3

/(

]

[

2

-

x

x

Q


d.

[image: image347.wmf])

/(

]

[

2

x

x

Q


4.
a.
Show 
[image: image348.wmf])

1

/(

]

[

R

2

+

x

x

 is a field by verifying that every non-zero congruence class 

[image: image349.wmf]_______

b

ax

+

 is a unit. Hint: Show that the inverse of 
[image: image350.wmf]_______

b

ax

+

 is 
[image: image351.wmf]_______

d

cx

+

, where 
[image: image352.wmf]2

2

b

a

a

c

+

-

=

 and 
[image: image353.wmf]2

2

b

a

b

d

+

=

.

b.
Find a polynomial 
[image: image354.wmf]]

[

R

x

d

cx

Î

+

 where 
[image: image355.wmf]__

_______

_______

1

 

4

5

=

+

×

-

d

cx

x

.

5.
For the congruence class ring 
[image: image356.wmf])

2

/(

]

[

2

-

x

x

Q

.


a.
Show 
[image: image357.wmf])

2

/(

]

[

2

-

x

x

Q

 is a field.


b.
Find a polynomial 
[image: image358.wmf]]

[

x

Q

d

cx

Î

+

 where 
[image: image359.wmf]__

_______

_______

1

 

3

3

=

+

×

-

d

cx

x

.

6.
Show that  
[image: image360.wmf])

4

/(

]

[

Q

2

-

x

x

 is not a field.

7.
Show that  
[image: image361.wmf])

/(

]

[

Q

2

x

x

 is not a field. Hint: Attempt to find the multiplicative inverse of the element 
[image: image362.wmf]__

x
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