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Section 9: The Structure of F[x]/p(x) when p(x) is Irreducible
HW p. 9 # 1-6 at the end of the notes
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In contrast, we saw in Example 6 in Section 8 that 
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This relationship  of when 
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Thus, since every non-zero element has a multiplicative inverse, 
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We can use Theorem 9.1 to quickly determine whether the rings we considered in Section 8 are fields, must faster than by we did in the Examples in that section.

Example 1: Is 
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Example 2: Is 
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Example 3: Is 
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As we will see later,  if p is prime and 
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Notes
1. 
In the previous example, it is not necessary to use a table to determine the roots. Using Definition 8.2 in Section 8, we can write for the polynomial 
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To use notation we are more familiar with, sometimes we will make a variable substitution so that the root of a polynomial in 
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The next theorem generalizes the ideas given in the last example.
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Example 2: For the irreducible polynomial 
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Corollary 9.3: Let F be a field and 
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Exercises
1.
Determine which of the rings are fields.
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