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Math 151 Handout Examples: Using the Definition of the Derivative,
Example 1: Use the definition of the derivative to find 
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Solution: Using the limit definition of the derivative, we see that
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Example 2: Find the equation of the line tangent to the graph of 
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 at the point (0, -1). 

Solution: To find the equation of any line, including a tangent line, we need to know the line’s slope and a point on the line. Since we already have a point on line, we must find the tangent line’s slope, which is found using the derivative. Using the limit definition of the derivative, we see that
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Using 
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, we can now find the slope at the give point (0, -1).
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Using 
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To find b, use the fact that at the point  (0, -1), 
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