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Supplemental Problems for Section 1.4
Recall the following:

Vertical Shift and Stretch Summary
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Horizontal Shift and Stretch Summary
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Example 1: For the exponential function 
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Example 2: For each of the following, find the base b if the graph of 
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Example 3: Solve the equation 
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Solution: Here, we start by factoring the common term 
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Since 
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Hence, we can solve for 
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which gives to solutions of 
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Example 4: Solve the equation 
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Definition: We say that the logarithm of base b of x, which is denoted as 
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Example 5: Evaluate the following:

a. 
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  Change of Base Formula for Logarithms
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Example 5: Approximate 
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Inverse Properties of Logarithms
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Example 6: Solve the resulting equation 
[image: image58.wmf])

6

ln(

)

2

ln(

ln

x

x

x

=

-

+

 for x.

Solution:




























█

Example 7: Solve the resulting equation 
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Solution: We can solve this equation using the following steps
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However, we can see that solution 
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 would be a false (extraneous) solution since this would require in the original equation that 
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Fact: Since the natural logarithm is an increasing function, if 
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Example 8: Find the smallest integer that satisfies the inequalities 
a. 
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