PAGE  
12

Section 2.1: The Derivative and the Tangent Line Problem
Tangent Lines
Recall that a tangent line to a circle is a line that touches the circle only once.




If we magnify the circle around the point P



[image: image1]
we see that slope of the slope of the tangent line very closely resembles the slope of the circle at P. For functions, we can define a similar interpretation of the tangent line slope.
Definition: The tangent line to a function at a point P is the line that best describes the slope of the graph of the function at a point P. We define the slope of the tangent line to be equal to the slope of the curve at the point P.


Examples of Tangent Lines:








Consider the following graph:
[image: image2.png])






Slope of Secant line
between the points              = 

(x, f(x)) and (x+h, f(x+h))


As h→0, the slope of the secant lines approach that of the tangent line of f at x = a.

Slope of 

tangent line     = m = 
of f at (x, f(x))                 
Definition: Given a function 
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(

x

f

y

=

, the derivative of f, denoted by 
[image: image4.wmf]f

¢

, is the function defined by 


[image: image5.wmf]h

x

f

h

x

f

x

f

h

)

(

)

(

lim

)

(

0

-

+

=

¢

®

,
provided the limit exists.
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For a function 
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 at a point x = a, 
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 gives the slope of the tangent line to the graph of f at the point 
[image: image8.wmf]))

(

,

(

a

f

a

.

2.
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 represents the instantaneous rate of change of f at x = a, for example, instantaneous velocity.
Example 1: Use the definition of the derivative to find the derivative of the function 
[image: image10.wmf]2
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Solution: 
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Example 2: Use the definition of the derivative to find the derivative of the function 
[image: image11.wmf].

1

2

)

(

2

+

-

=

x

x

x

f


Solution: 
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Example 3: Find the equation of the tangent line to the curve 
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 at the point (1, 2).


Solution: 
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Example 4: Use the definition of the derivative to find 
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Solution: Using the limit definition of the derivative, we see that
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Example 5: Find the derivative using the definition and use the result to find the equation of the line tangent to the graph of 
[image: image16.wmf]1
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 at the point (0, -1). 


Solution: To find the equation of any line, including a tangent line, we need to know the line’s slope and a point on the line. Since we already have a point on line, we must find the tangent line’s slope, which is found using the derivative. Using the limit definition of the derivative, we see that
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Using 
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, we can now find the slope at the give point (0, -1).
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Using 
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, we see that from the slope intercept equation 
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To find b, use the fact that at the point  (0, -1), 
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Differentiability and Points where the Derivative Does Not Exist
Note: The derivative of a function may not exist a point.

Fact: If a function is not continuous at a point, its derivative does not exist at that point.

For, example, 
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is not continuous at x = 1. This implies that 
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 , which computationally says
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Note! However, a function may still be continuous at a point but the derivative may still not exist.


Example 10: Use the definition of the derivative to demonstrate that 
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Fact: In general, a function that displays any of these characteristics at a point is not differentiable at that point


Cases
1. 
The function is not continuous at a point – it has a jump, break, or hole in the graph at 


that point. 





2.
The function has a sharp point or corner at a point.





3.
The function has a vertical tangent at a point.


 



Example 11: Determine the point)s on the following graph where the derivative does not exist. Give a short reason for your answer.
[image: image35.png]Graph ol ix)






Solution:
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