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Section 2.2: Derivatives of Polynomials and Exponential Functions
Alternative Notations for the Derivative
If 
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is known as the derivative of y with respect to x. 

For example, if we have the function 
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For doing intermediate computations, we have the following notation:
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Thus, we can say
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Also, to evaluate a derivative at a point, say x = a, we write
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Hence, if 
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Basic Derivative Formulas

1. 
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, where k is a constant (for our purposes, a real number).
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Example 1: Differentiate
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Example 2: Differentiate
[image: image16.wmf]9
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Example 3: Differentiate 
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Example 4: Differentiate
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Properties of Differentiation


1. 
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2. 
[image: image20.wmf])

(

)

(

))

(

)

(

(

x

g

x

f

x

g

x

f

dx

d

¢

±

¢

=

±


Example 5: Differentiate
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Example 6: Differentiate
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Example 7: Differentiate
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Example 8: Differentiate
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Solution: Using the following property of fractions that 
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Differentiating 
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Example 9: Find the equation of the line tangent to the graph of 
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Solution: To find the equation of any line, including a tangent line, we need a point (this is given to be 
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) and the slope. Recall that the derivative at a point gives the slope of the tangent line at that point. To find a formula for calculating the slope, we calculate the derivative of the function which is given by 
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Then, using the slope intercept equation of a line (in terms of t) given by
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we use the slope of the tangent line we just found m = 1 to find the equation of the tangent line as follows:
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Hence, substituting the slope m = 1 and 
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(Continued on next page)
The graph of the function and its tangent line can be seen as follows using the Maple command
> plot([sin(t)+2*t, t + Pi], t = -Pi..2*Pi, y = -10..15, color = [red, blue],thickness = 2, title = "Graph f(t) = sin(t)+t (red), tangent line y = t+Pi (blue) at point (Pi, 2Pi)");
[image: image39.png](Graph i) = sm{t}H (red), tangent me y = E+4 (blue) at pomt (P, 285)
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Example 10: Find the point)s on the graph of 
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Solution: On this problem, a horizontal tangent line means that the slope of the tangent line is 0. Since the derivative gives a formula for the slope of the tangent line, we can find the point that gives a tangent line slope of 0 by taking the derivative of the function, setting it equal to 0, and solving for x. The result of this calculation is as follows:
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To complete the problem, we must find the y-coordinate of the point by substituting 
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Thus, the coordinates of the point that have a horizontal tangent line is
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Average Velocity


Suppose the position of a moving object starting from rest is given by the position function 
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We define the average velocity on the time interval from t = a to t = b as follows:


Formula For Average Velocity
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Example 11: Find the average velocity for the time intervals [1, 3] and [3, 4] for an object if the position starting from rest is given by 
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Suppose we now desire to find the velocity of the object precisely when t = 1 second for the position function 
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A method for approximating would involve finding average velocities on an interval that is “close” to t = 1.


Example 12: Find the average velocity for the time intervals [1, 1.01] and [1, 1.001] for an object if the position starting from rest is given by 
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Solution: To assist in the calculations, we find the position function 
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Then, using the average velocity formula
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we obtain
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In general, for an object moving from time 
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To get the instantaneous velocity at 
[image: image62.wmf]t

t

=

1

, we let h→0 which gives the following definition.


Instantaneous Velocity and Instantaneous Rate of Change


Given a position function 
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In general, if we are given a function 
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Example 13: Find the instantaneous velocity for the position function 
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Example 14: The position function representing the height of a freely falling object is given by 
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 is the initial velocity of the object and 
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 is the initial height of the ball at time t = 0. Here the height s is in feet and the time t is in seconds. Suppose someone throws a baseball from 6 feet off the ground with a initial velocity of 100 ft/s.

a. Determine the position and velocity functions for the ball.

b. Find the average velocity for the time intervals [4, 4.1], [4, 4.01], and [4, 4.0001].

c. Find the instantaneous velocity when t = 4 and t = 5 seconds.

d. Find the time required for the ball to reach ground level.

e. Find the velocity of the coin at impact.

Solution part a: Since the ball starts 6 ft off the ground, the initial height is 
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To get the velocity equation, we take the derivative of the position equation 
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Solution part b: Recall that given a time interval 
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To find the average velocities for the given intervals, we will use the following calculations:



[image: image82.wmf]ft

 

150

6

400

256

6

)

4

(

100

)

4

(

16

)

4

(

2

=

+

+

-

=

+

+

-

=

s

.


[image: image83.wmf]ft

 

04

.

147

6

410

96

.

268

6

)

1

.

4

(

100

)

1

.

4

(

16

)

1

.

4

(

2

=

+

+

-

=

+

+

-

=

s



[image: image84.wmf]ft

 

7184

.

149

6

401

2816

.

257

6

)

01

.

4

(

100

)

01

.

4

(

16

)

01

.

4

(

2

=

+

+

-

=

+

+

-

=

s



[image: image85.wmf]ft

 

99719984

.

149

6

01

.

400

01280016

.

256

6

)

0001

.

4

(

100

)

0001

.

4

(

16

)

0001

.

4

(

2

=

+

+

-

=

+

+

-

=

s


Hence,










Continued on the next page

[image: image86.wmf]ft/sec

 

6

.

29

1

.

0

96

.

2

1

.

0

150

04

.

147

4

1

.

4

)

4

(

)

1

.

4

(

1

.

4

  

 to

4

]

1

.

4

,

4

[

 

interval

 

time

on the

 velocity 

Average

-

=

-

=

-

=

-

-

=

=

=

s

s

t

t




[image: image87.wmf]ft/sec

 

16

.

28

01

.

0

2816

.

0

01

.

0

150

7184

.

149

4

01

.

4

)

4

(

)

01

.

4

(

01

.

4

  

 to

4

]

01

.

4

,

4

[

 

interval

 

time

on the

 velocity 

Average

-

=

-

=

-

=

-

-

=

=

=

s

s

t

t




[image: image88.wmf]ft/sec
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Note that the negative average velocities indicate that the ball is falling down instead of going up.


Solution part c: The average velocities found in part b indicate the instantaneous velocity at the specific time 
[image: image89.wmf]4

=

t

 should be close to -28 ft/sec. From part a, we found the equation for the instantaneous velocity at a particular time t to be
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Thus, at 
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We can easily use this same equation to find the velocity at t = 5 seconds.
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Solution part d: When the ball reaches ground level, its height s = 0. Thus, the find the time when the ball reaches ground level, we set the position equation 
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and solve for t. Since this quadratic equation is not easily factorable, we use the quadratic formula to find its approximate solution. 
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Recall that the quadratic formula says that the solution to the quadratic equation is given by 
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Thus, the ball hits the ground in approximately 6.3 seconds.
Solution part e: From part d, we found out the ball hits the ground after t = 6.3 seconds. To find the velocity when the ball impacts the ground, we substitute t = 6.3 into the velocity equation we found in part a 
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