PAGE  
10

Section 2.8: Newton’s Method
Newton’s Method
Recall:  A root (zero) of a function 
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Example 1: Find the zeros of the function 
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. Verify your answer is correct.
Solution:
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Fact: Graphically, the roots (zeros) give the x-intercepts of a function.
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In this section, we need a method to approximate zeros, which are not easily found by algebraic methods.
Suppose we want to find a root x = c of the following function 
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We make a guess 
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 which is “sufficiently” close to the solution. We use the point slope equation to find equation of the tangent line at the point 
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Consider the point where the graph of the tangent line intercepts the 
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 axis, which we label as 
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 is “closer” to the zero x = c than 
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We solve this equation for 
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We next find the equation of the tangent line to the graph of 
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Suppose this tangent line intercepts the x axis at the point 
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 is given by
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The value 
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 is even closer to the zero of x = c than 
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Newton’s Method (Newton Raphson Method)
Given an initial value 
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 that is sufficiently “close” to a zero x = c of a function 
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Then the following iterative calculation 
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can be used to successively better approximate the zero x = c.
Notes:

1. 
We usually generate iterations until two successive iterates agree to a specified 


number of decimal places.

2.
Newton’s method generally converges to a zero in a small number (< 10) iterations.

3.
Newton’s method may fail in certain instances.


Examples of Failure for Newton’s Method
1. Iterate produces a tangent line slope of zero.
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2. Initial guess 
[image: image36.wmf]1

x

 not close enough 
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Example 2: Use Newton’s Method to approximate the zero)s of 
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 Continue the process until two successive approximations differ by less than 0.001.
 
Solution: > f := x^5 + x - 1;
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> plot(f, x = -3..3, view = [-3..3, -2..2]);
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> f := x^5 + x - 1;
[image: image41.wmf]
> plot(f, x = -3..3, view = [-3..3, -2..2]);
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> N := x -> x - (x^5 + x - 1) / (5*x^4 + 1);
[image: image43.wmf]
> x1 := 0.75;
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> x2 := evalf( N(x1) );
[image: image45.wmf]
> abs(x2 - x1);
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> x3 := evalf( N(x2) );
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> abs(x3 - x2);
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> x4 := evalf( N(x3) );
[image: image49.wmf]
> abs(x4 - x3);
[image: image50.wmf]
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Example 3: Use Newton’s Method to approximate the solution of the equation  
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Solution:
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> f := x -> (x-1)^3 - sin(x);
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> plot(f(x), x = -3..3, view = [-3..3, -4..4]);
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> f := x -> (x - 1)^3 - sin(x);
[image: image58.wmf]
> plot(f(x), x = -3..3, view = [-3..3, -2..2]);
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> N := x -> x - ((x-1)^3 - sin(x)) / (3*(x-1)^2 - cos(x));
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> x1 := 2;
[image: image61.wmf]
> x2 := evalf( N(x1) );
[image: image62.wmf]
> abs(x2 - x1);
[image: image63.wmf]
> x3 := evalf( N(x2) );
[image: image64.wmf]
> abs(x3 - x2);
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> x4 := evalf( N(x3) );
[image: image66.wmf]
> abs(x4 - x3);
[image: image67.wmf]
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