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Section 3.3: Increasing and Decreasing Functions and The 


First Derivative Test
Section 3.4  Concavity and The Second Derivative Test

Practice HW from Larson Textbook (not to hand in)

p. 177 # 1-29 odd, 33, 39, 47, 49
p. 185 # 1-29 odd                              
Increasing and Decreasing Test for Functions
Given a function f  defined on an interval.
1. If 
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 on an interval, then f  is increasing on that interval.
2. If 
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 on an interval, then f  is decreasing on that interval.
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Example 2: State whether the function 
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 is increasing, decreasing, or neither on an interval “near” x = 2.
Solution:
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First Derivative Test
Suppose x = c is a critical number of a continuous function f .

1. If 
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 is a relative maximum.

2. If 
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 is a relative minimum.
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Concavity

- A function f  is concave up on an interval I if 
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 is increasing on I.
- A function f  is concave down on an interval I if 
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 is decreasing on I.
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Concavity Test for Functions
Given a function f  defined on an interval.

1. If 
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 on an interval, then f  is concave up on that interval.

2. If 
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 on an interval, then f  is concave down on that interval.

Example 2: State whether the function 
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x

x

f

3

)

(

3

-

=

 is concave up, concave down, or neither on an interval “near” x = -1.
Solution:
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Inflection Points
Inflection points are points where the concavity of the graph of a function f  changes.
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Note: If 
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 is a point of inflection of the graph of f , then either 
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Second Derivative Test (Test For Relative Maximum and Relative Minimum Points)

Let f  be a function where x = c is a critical point where 
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1. If 
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2. If 
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3. If 
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 is undefined, the test fails – use the 1st derivative test.
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Procedure For Graphing Functions Using Derivatives

Given a function 
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1. State the domain of the function. 
2. Compute 
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3. Find the critical numbers, which are values of x where either 
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    undefined. Find the y coordinates of these points by substituting these x values back


 into the original function 
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. These points represent the candidates for the local


 maximum and minimum points.
4. Use the 2nd  derivative test to determine whether critical numbers are local 


 Maximum or local minimum points. If the 2nd  derivative test 

 fails, use the 1st  derivative test with a sign diagram, testing whether the 1st derivative 

 is positive or negative to the left and right of the critical numbers.
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5. Look for candidates for the points of inflection by finding values of x where either   
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 is undefined. Find the y coordinates of these points by substituting  

 these x values back into the original function 
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. These points represent the   

 candidates for the points of inflection.
6. Test the inflection point candidates by testing the concavity to the left and the right of 


 inflection point candidates using a sign diagram with the 2nd derivative.

7. Use the information to sketch the graph.
Example 3: For the function 
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, determine the intervals where the function is increasing and decreasing, local maximum and local minimum points, the intervals where the function is convave up and convave down, and the points of inflection.

Use the information to sketch the graph. 
Solution:
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Example 4: For the function 
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4

4

)

(

x

x

x

f

-

=

, determine the intervals where the function is increasing and decreasing, local maximum and local minimum points, the intervals where the function is convave up and convave down, and the points of inflection.

Use the information to sketch the graph. 













█

Example 5: For the function 
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, determine the intervals where the function is increasing and decreasing, local maximum and local minimum points, the intervals where the function is convave up and convave down, and the points of inflection.

Use the information to sketch the graph. 

Solution: Note that for this function 
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 is undefined. Hence, the domain of this function is all real numbers or 
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Using the form 
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 for the first derivative, we see that
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Hence, 
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We next find the critical numbers. Note that in this case, 
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x = 0. Therefore, x = 0 is one critical number. We next look for critical numbers where 
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(Simplify and solve for x)
Hence, the critical numbers are x = 0 and x = 8.   (continued on next page)
	


For the critical numbers, we find their corresponding y coordinates. To do this, we must use the original function 
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 gives the point (0, 0)
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gives the point (8, 4)
Hence, (0, 0) and (8, 4) are the local maximum and minimum point candidates.
To test these points, we first try the 2nd  derivative test using 
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 This says the graph is concave down at this point or that (8, 4) is a local maximum.
Hence, the 2nd  derivative test says (8, 4) is a local maximum but is inconclusive for the point (0, 0). So we need more information. We get it by using the 1st  derivative test by testing the sign of the 1st derivative to the left and right of each critical number (which of course are the same as the x coordinates of the local maximum and minimum candidates).
1st Derivative Test Table for 
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Note 0 < 1 < 8
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x = 9 > 8
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(continued on next page)
To the left of the critical number x = 0, the 1st derivative test table says the graph of 
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 is decreasing. To the right of x = 0, the 1st derivative test table says the graph of 
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 is increasing. By definition, this says the point (0, 0) is a local minimum. 
To the left of the critical number x = 8, the 1st derivative test table says the graph of 
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 is increasing. To the right of x = 8, the 1st derivative test table says the graph of 
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 is decreasing. By definition, this says the point (8, 4) is a local maximum (which agrees with the assertion already established by the 2nd Derivative test). 

The table also gives information where the graph of 
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Now, we look for points of inflection. Recall that points of inflection occur at points where the second derivative 
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 is undefined at x = 0. Thus x = 0 is inflection point candidate. If we set
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(Multiply both sides by 
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Since 
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, this produces not solution. Thus, x = 0 is the only inflection point candidate. Recall that its y-coordinate on the graph is obtain by substituting into the original function 
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 gives the point (0, 0)
To test whether the concavity changes, we use a test table involving the second derivative.















(continued on next page)
2nd Derivative Test Table for 
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Since the concavity of the graph does not change to the left and right of x = 0 (it remains concave down), the point (0, 0) does not produce a point of inflection. Since there are no other candidates, the graph of 
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 has to points of inflection. Using the table, we see that we have the following intervals for concavity.

Concave Down: When x < 0, x > 0 or in interval notation 
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Concave Up: Never

In summary, this is the information we have produced:

1. 
The point (0, 0) is a local minimum, the point (8, 4) is a local maximum.

2. 
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3. 
There are no points of inflection.

4. 
The graph is concave down on the interval 
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The graph is never concave up.

5.  
Note that the local minimum, (0, 0), was obtained from an undefined critical point,  

that is, 
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 was undefined at x = 0. A function has an undefined derivative  at a point where the graph is not continuous, has a sharp point, or a vertical tangent. The function
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 is continuous at x = 0. Since (0, 0) is a local minimum, the graph changes from decreasing to increasing at this point. In addition, the concavity remains down to the left and right of this point.  Hence, the graph produces a sharp point at (0, 0).









(continued on next page)
The following is the graph of the function 
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