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Section 4.2/4.3: Area, Riemann Sums and the Definite Integral 
Practice HW from Larson Textbook (not to hand in)

p. 235 # 1, 3, 19-25, 43 (use Maple), 45 (use Maple) 53, 55
p. 245 # 31-38
Sigma Notation
The sum of n terms 
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, where i = the index of summation


Example 1: Find the sum 
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Solution:
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The Definite Integral
Suppose we have a function 
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 which is continuous, bounded, and increasing for 
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Goal: Suppose we desire to find the area A under the graph of f  from x = a to x = b.
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To do this, we divide the interval for 
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 into n equal subintervals and form n rectangles (subintervals) under the graph of f . Let 
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 be the endpoints of each of the subintervals.
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Here,
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Summing up the area of the n rectangles, we see
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We can also use the right endpoints of the intervals to find the length of the rectangles.
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Summing up the area of the n rectangles, we see
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Note: When f  is increasing, 
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If f  is decreasing,
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In summary, if we divide the interval for 
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 into n equal subintervals and form n rectangles (subintervals) under the graph of f . Let 
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The endpoints of the n subintervals contained within [a, b] are determined using the 

formula
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Example 2: Use the left and right endpoint sums to approximate the area under 
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 on the interval [0, 2] for n = 4 subintervals.
 
Solution:
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Note: We can also approximate the area under a curve using the midpoint of the rectangles to find the rectangle’s length.
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where 
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Example 3: Use the midpoint rule to approximate the area under 
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 on the interval [0, 2] for n = 4 subintervals.

Solution: Graphically, our goal is to find the area of the  n  = 4 rectangles for the interval 

[a, b] = [0, 2] produced by the following graph.

[image: image37.png]Mudpomi Sum Graph lor ix) = x*2 + 1 with n = 4 submiervals
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In this problem,
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The endpoints of the n = 4 subintervals are calculated as follows using the formula 
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In this problem, we must find the midpoints of the n = 4 subintervals using the formula 
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Hence, the heights of the rectangles using the function 
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Note: The left endpoint (lower), right endpoint (upper), and midpoint sum rules are all special cases of what is known as Riemann sum.
Note: To increase accuracy, we need to increase the  number of subintervals.
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If we take n arbitrarily large, that is, take the limit of the left, midpoint, or right endpoint sums as 
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, the left, midpoint, and right hand sums will be equal. The common value of the left, midpoint, and right endpoint sums is known as the definite integral.
Definition: The definite integral of f  from a to b, written as 
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is the limit of the left, midpoint, and right hand endpoint sums as 
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Notes
1. Each sum (left, midpoint, and right) is called a Riemann sum.

2. The endpoints a and b are called the limits of integration.

3. If 
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 4. The endpoints of the n subintervals contained within [a, b] are determined using the 
     formula. Here, 
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Left and right endpoints: 
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Midpoints: 
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5.
Evaluating a Riemann when the number of subintervals 
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 requires some tedious 

algebra calculations. We will use Maple for this purpose. Taking a finite 


number of subintervals only approximates the definite integral.
Example 4: Use the left, right, and midpoint sums to approximate 
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n = 5 subintervals.
Solution: On this one, we begin by finding the subintervals and corresponding functional values for the endpoints of the n = 5 subintervals. First, note that the length of each subinterval for the interval [a, b] = [-1, 2] is 
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Hence, the endpoints of the n = 5 subintervals using the formula 
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To get the midpoint sum, we need to find the midpoints of the subintervals using the formula 
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To increase accuracy, we need to make the number of subintervals n (the number of rectangles) larger. Maple can be used to do this. If we let 
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The following example will illustrate how this infinite limit can be set up using the right hand sum.
Example 5: Set up the right hand (upper) sum limit for finding the exact value of 
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Solution: For n subintervals, the formula for the right hand sum is given by
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For the definite integral 
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Hence, the right hand sum is given by








(continued on next page)
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This result and the resulting limit  value can be generated using the following Maple commands:
> f := x -> x^2 + 1;
[image: image108.wmf]
> deltax := 2/n;
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> x[i] := 0 + i*2/n;
[image: image110.wmf]
> s := Sum(f(x[i])*deltax, i = 1..n);
[image: image111.wmf]
> rsum := Limit(s, n = infinity);
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> value(rsum);
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Summarizing, using Maple, we can find the following information for approximating 
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Properties of the Definite Integral
If f  and g are integrable functions on 
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Example 6: Given 
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Additive Interval Property

Fact: If f  and g are integrable functions on 
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Example 7: Given 
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Solution: By the additive interval property of integrals, we can say that
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