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Section 6.6: Indeterminate Forms and L’Hospital’s  Rule
Practice HW from Larson Textbook (not to hand in)

p. 412 # 5-37 odd
In this section, we want to be able to calculate limits that give us indeterminate forms such as 
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 and 
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. In Section 2.5, we learned techniques for evaluating these types of limit which we review in the following examples.
Example 1: Evaluate 
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Example 2: Evaluate 
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Solution:
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However, the techniques of Examples 1 and 2 do not work well if we evaluate a limit such as
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For limits of this type, L’Hopital’s rule is useful.

L’Hopital’s Rule
Let f  and g  be differentiable functions where 
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 near x = a (except possible at     x = a). If
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produces the indeterminate forms 
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provided the limit exists.

Note: L’Hopital’s rule, along as the required indeterminate form is produced, can be applied as many times as necessary to find the limit.

Example 3: Use L’Hopital’s rule to evaluate 
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Example 4: Use L’Hopital’s rule to evaluate 
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Solution:
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Example 5: Evaluate 
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Solution:
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Note! We cannot apply L’Hopital’s rule if the limit does not produce an indeterminant form  
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Example 6: Evaluate 
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Helpful Fact: An expression of the form 
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Example 7: Evaluate 
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Solution: For this problem, first realize that if we directly substitute in x = 0, we get the following:
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Since we have the indeterminant form 
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, L’Hopital’s rule applies. Applying the rule once gives


[image: image29.wmf]x

e

x

e

x

e

x

x

x

x

x

x

2

3

lim

2

0

3

lim

1

lim

3

0

3

0

2

3

0

+

+

+

®

®

®

=

-

=

-


It is tempting to use L’Hopital’s again. However, direct substitution results in the following
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The result is not an indeterminate form, but a non-zero number divided by 0, which results in an infinite limit. To see what type of infinite behavior occurs, one can example that as x gets closer to 0 from the right, the numerator 
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 steadily becomes a smaller and smaller positive number. Taking a finite number 3 and dividing by a small positive gives a large number. Thus 
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. If you still have trouble convincing yourself of this, using a plot chart such as the following can be helpful.
	
[image: image34.wmf]x


Approaches 0 from the right
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Obviously, it can be seen that 
[image: image37.wmf]¥

=

+

®

x

e

x

x

2

3

lim

3

0

. Thus, in summary we see that 

 


[image: image38.wmf]¥

=

=

-

+

+

®

®

x

e

x

e

x

x

x

x

2

3

lim

1

lim

3

0

2

3

0






█
Other Types of Indeterminant Forms
Note: For some functions where the limit does not initially appear to as an indeterminant 
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Indeterminant Products

Given the product of two functions 
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 results (this is not necessarily zero!). To solve this problem, either write the product as 
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Example 8: Evaluate 
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Example 9: Evaluate 
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Solution: As 
[image: image54.wmf]+

®

0

x

, 
[image: image55.wmf]0

2

®

x

 and 
[image: image56.wmf]-¥

®

x

ln

 (if you do not believe this, take your calculator and compute the natural logarithm of some very small positive numbers, like 
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, etc. Hence, we have the indeterminant form 
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  (Note that 
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In this form, we have the indeterminant form 
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 and can indeed use L’Hopital’s Rule. This gives


[image: image63.wmf]limit)

 

 the

(Evaluate

          

          

0

2

)

0

(

 

      

          

(Simplify)

        

          

2

lim

 

       

          

multiply)

 

and

r 

denominato

 

 the

of

 

reciprocal

 

 the

(Take

 

          

2

1

lim

 

       

          

)

2

2

)

(

1

 

and

  

1

)

(ln

 that 

(Note

         

2

1

lim

         

          

1

ln

lim

ln

lim

2

2

0

3

0

3

3

2

2

3

0

2

0

2

0

=

-

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

÷

ø

ö

ç

è

æ

=

-

=

-

=

=

÷

ø

ö

ç

è

æ

=

-

=

=

+

+

+

+

+

®

®

-

-

®

®

®

x

x

x

x

x

x

dx

d

x

dx

d

x

x

dx

d

x

x

x

x

x

x

x

x

x

x

x


Thus, 
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Indeterminate Differences

Get an indeterminate of the form 
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 (this is not necessarily zero!). Usually, it is best to find a common factor or find a common denominator to convert it into a form where L’Hopital’s rule can be used.

Example 10: Evaluate 
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Solution:
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Indeterminate Powers

Result in indeterminate 
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, or 
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. The natural logarithm is a useful too to write a limit of this type in a form that L’Hopital’s rule can be used.
Example 11: Evaluate 
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Solution: On this problem, if we substitute in 0 directly into the limit, we obtain 
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, and indeterminate power. We can use logarithms to solve this limit. We start by setting
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Taking the natural logarithm of both sides gives
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Using the exponent property of logarithms 
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Direct substitution for the right hand side yields 
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which says L’Hopital’s rule can be used. This gives
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      (continued on next page)
Hence, we have found that 
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Recall by definition that 
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By definition, recall that 
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However, recall above that we set 
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, which was our original limit. Hence, substituting for y, we obtain the following answer.
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