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Section 5.2: Volume: The Disk Method
Practice HW from Larson Textbook (not to hand in)

p. 322 # 1-27 odd
Solids of Revolution
In this section, we want to examine how to find the volume of a solid of revolution, which is formed by rotating a region in a plane about a line.

Examples: Figures 5.14 p. 315
Disc Method
Consider a rectangle of length R and width w.
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If we rotate this rectangle about this axis, we sweep out a circular disk.
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Volume of Disk = (Area of Disk)(Width of Disk) = 
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Now, suppose we have a function R(x) and rotate it about the x-axis.
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To generate the volume of the entire solid, we divide up the interval from x = a to x = b into n equal subintervals, for n rectangles, and add up the volumes of the disks formed by rotating each rectangle around the x axis. 


Exact Volume of the Solid = 
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We can also rotate around the y-axis.
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Exact Volume of the Solid = 
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Disc Method

To find the volume of a solid of revolution, we use

Horizontal Axis of Revolution: 
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Vertical Axis of Revolution: 
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Notes

1.
The representative rectangle in the disk method is always perpendicular to the axis of 


rotation.

2.   It is important to realize that when finding the function R representing the radius of the 

solid, measure from the axis of revolution.
Example 1: Find the volume of the solid form by rotating the region generated by the graphs bounded by x = 0, y = 0 and 
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 about the x-axis.

Solution:
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Example 2: Find the volume of the solid generated by revolving the region bounded by 
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, x = 0, and y = 8 where 
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 about the
a. y axis.

b. the line y = 8.
Solution:













█

The Washer Method

Involves extending the disk method to cover solids of revolution with a hole. Consider

the following rectangle, where w is the width, R is the distance from the axis of revolution to the outer edge of the rectangle, and r is the distance from the axis of revolution to the inner edge of the rectangle.



If we rotate this rectangle about this axis, we sweep out a circular washer.



Look at Figures 5.18-5.20 p. 318
Now, consider the region bound by an outer radius R(x) and inner radius r(x) and suppose we rotate this region around the x axis.
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Then
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Example 3: Find the volume of the solid obtained by rotating the region bounded by 
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a. The x axis

b. x = 3.
Solution (Part a): We consider the following region given by the following graphs:
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If we rotate about the x-axis, we must find the radius of the entire solid (outer radius) and the radius of the hole (inner radius). Here, the outer radius is 
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. Hence, the volume of the washer revolved about the x-axis (a horizontal axis) is
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(Part b): We consider the following region given by the following graphs:

[image: image24.emf]
If we rotate about the x = 3 (a vertical axis), the radius of the entire solid (outer radius) is 
[image: image25.wmf]3
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and the radius of the hole (inner radius) is 
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