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Section 4.2: Maximum and Minimum Values
Practice HW from Stewart Textbook (not to hand in)

p. 276 # 1-7 odd, 15-19 odd, 23-29 odd, 33-45 odd
Extrema
Let D be the domain of a function f.

1. 
A function f  has and absolute maximum (global maximum) at x = c if 
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for all x in D (
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 is the largest y value for the graph of f  on the 


domain D).

2. 
A function f  has and absolute minimum (global minimum) at x = c if 
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for all x in D (
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 is the smallest y value for the graph of f  on the 


domain D).
The absolute maximum and absolute minimum values are known as extreme values.
Example 1: Determine the absolute maximum and minimum values for the following graphs.
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Relative Extrema
A function f  has a local maximum (relative maximum) at x = c if 
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 when x is near c (f  changes from increasing to decreasing) at the point 
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A function f  has a local minimum (relative minimum) at x = c if 
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 when x is near c (f  changes from decreasing to increasing) at the point 
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Example 2: Determine the local (relative) maximum and minimum points for the following graphs.
Solution:
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Note: Local maximum and local minimum points do not always give absolute maximum and minimum points.
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Critical Numbers
If a function f  is defined at x = c (x = c is in the domain of f ), then x = c is a critical number (critical point) if 
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Fact: If f  has a relative minimum or a relative maximum at x = c, then x = c must be a critical number for the function f.
Note: Before determining the critical numbers for a function, you should state the domain of the function first.
Example 3: Find the critical numbers of the function 
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Solution:
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Example 4: Find the critical numbers of the function 
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Solution:
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Note: Having x = c be a critical number, that is, when 
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 is undefined, does not guarantee that x = c produces a local maximum or local minimum for the function f.
Example 5: Demonstrate that the function 
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Solution:
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The Extreme Value Theorem

If a function f  is continuous on a closed interval [a, b], then f  has both an absolute minimum and an absolute maximum in [a, b].
Steps for Evaluation Absolute Extrema on a Closed Interval
To find the absolute maximum and absolute minimum points for a continuous function f  on the closed interval [a, b].

1. 
Find the critical numbers of f (values of x where 
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 is undefined) that are contained in  [a, b]. Important!  You must make sure you only consider critical numbers for step 2 that are in  [a, b]. For critical numbers not in  [a, b], you must throw these out and not consider them for step 2.

2.
Evaluate f (find the y values) at each critical number in  [a, b] and at the endpoints of 


the interval x = a and x = b.

3.
The smallest of these values (smallest y value) from step 2 is the absolute minimum. The largest of these values (largest y value) is the absolute maximum.
Example 6: Find the absolute maximum and absolute minimum values for the function 
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 on the interval [0, 3].
Solution:
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Example 7: Find the absolute maximum and absolute minimum values for the function 
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Solution:
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Example 8: Find the absolute maximum and absolute minimum values for the function 
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Solution: To find the candidates for the absolute maximum and minimum points, we first find the critical numbers. We first compute 
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. Noting that the derivative 
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 is defined for all values of x, we then find the critical numbers by looking for values of x where
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 and solve for x. This gives
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Within the interval 
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, the sine function is negative in the third quadrant. Hence, the critical number within 
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We test these candidates using the original function 
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 to see which as the smallest and largest functional value (y-value). We see that
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Hence, we see that the absolute extrema are the following:

Absolute maximum: 
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     Absolute minimum: 
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