Section 4.2: Maximum and Minimum Values

Practice HW from Stewart Textbook (not to hand in) p. 276 # 1-7 odd, 15-19 odd, 23-29 odd, 33-45 odd

Extrema

Let *D* be the domain of a function *f*.

- 1. A function f has and <u>absolute maximum</u> (global maximum) at x = c if $f(c) \ge f(x)$ for all x in D(f(c)) is the largest y value for the graph of f on the domain D).
- 2. A function f has and <u>absolute minimum</u> (global minimum) at x = c if $f(c) \le f(x)$ for all x in D(f(c)) is the smallest y value for the graph of f on the domain D).

The absolute maximum and absolute minimum values are known as <u>extreme</u> <u>values</u>.

Example 1: Determine the absolute maximum and minimum values for the following graphs.

Relative Extrema

A function f has a local maximum (relative maximum) at x = c if $f(c) \ge f(x)$ when x is near c (f changes from increasing to decreasing) at the point (c, f(c)).

A function f has a local minimum (relative minimum) at x = c if $f(c) \le f(x)$ when x is near c (f changes from decreasing to increasing) at the point (c, f(c)).

Example 2: Determine the local (relative) maximum and minimum points for the following graphs.

Note: Local maximum and local minimum points do not always give absolute maximum and minimum points.

Critical Numbers

If a function f is defined at x = c (x = c is in the domain of f), then x = c is a critical number (critical point) if f'(c) = 0 or if f'(c) is undefined.

Fact: If f has a relative minimum or a relative maximum at x = c, then x = c must be a critical number for the function f.

Note: Before determining the critical numbers for a function, you should state the domain of the function first.

Example 3: Find the critical numbers of the function $g(x) = x^4 - 4x^2$.

Example 4: Find the critical numbers of the function $f(x) = x^{\frac{2}{3}}$.

Note: Having x = c be a critical number, that is, when f'(c) = 0 or f'(c) is undefined, does not guarantee that x = c produces a local maximum or local minimum for the function f.

Example 5: Demonstrate that the function $f(x) = x^3$ has a critical number but no local maximum or minimum point.

Solution:

The Extreme Value Theorem

If a function f is continuous on a closed interval [a, b], then f has both an absolute minimum and an absolute maximum in [a, b].

Steps for Evaluation Absolute Extrema on a Closed Interval

To find the absolute maximum and absolute minimum points for a continuous function f on the closed interval [a, b].

- 1. Find the critical numbers of f (values of x where f'(x) = 0 or f'(x) is undefined) that are contained in [a, b]. **Important!** You must make sure you only consider critical numbers for step 2 that are in [a, b]. For critical numbers not in [a, b], you must throw these out and not consider them for step 2.
- 2. Evaluate f (find the y values) at each critical number in [a, b] and at the endpoints of the interval x = a and x = b.
- 3. The smallest of these values (smallest y value) from step 2 is the absolute minimum. The largest of these values (largest y value) is the absolute maximum.

Example 6: Find the absolute maximum and absolute minimum values for the function $f(x) = x^3 - 3x + 1$ on the interval [0, 3].

Example 7: Find the absolute maximum and absolute minimum values for the function $f(x) = x \ln x$ on the interval [1, 4].

Example 8: Find the absolute maximum and absolute minimum values for the function $f(x) = x - 2\cos x$ on the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

Solution: To find the candidates for the absolute maximum and minimum points, we first find the critical numbers. We first compute $f'(x) = 1 - 2(-\sin x) = 1 + 2\sin x$. Noting that the derivative f' is defined for all values of x, we then find the critical numbers by looking for values of x where f'(x) = 0. Hence, we set $f'(x) = 1 + 2\sin x = 0$ and solve for x. This gives

$$f'(x) = 1 + 2\sin x = 0$$

$$2\sin x = -1$$
 (Subtract 1 from both sides)
$$\sin x = -\frac{1}{2}$$
 (Divide by 2)

Within the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, the sine function is negative in the third quadrant. Hence, the critical number within $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ where $\sin x = -\frac{1}{2}$ is $x = \frac{7\pi}{6}$. Thus the candidates for finding the absolute maximum and minimum points are the following:

$$x = \frac{7\pi}{6}$$
 (critical number in the given interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$)

$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$
 (endpoints of the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$)

We test these candidates using the original function $f(x) = x - 2\cos x$ to see which as the smallest and largest functional value (y-value). We see that

$$x = \frac{\pi}{2} \Rightarrow y = f(\frac{\pi}{2}) = \frac{\pi}{2} - 2\cos\frac{\pi}{2} = \frac{\pi}{2} - 2(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2} \approx 1.57 \iff \text{Absolute Minimum}.$$

$$x = \frac{7\pi}{6} \Rightarrow y = f(\frac{7\pi}{6}) = \frac{7\pi}{6} - 2\cos\frac{7\pi}{6} = \frac{7\pi}{6} - 2(-\frac{\sqrt{3}}{2}) = \frac{7\pi}{6} + \sqrt{3} \approx 5.40 \iff \text{Absolute Maximum}$$

$$x = \frac{3\pi}{2} \Rightarrow y = f(\frac{3\pi}{2}) = \frac{3\pi}{2} - 2\cos\frac{3\pi}{2} = \frac{3\pi}{2} - 2(0) = \frac{3\pi}{2} - 0 = \frac{3\pi}{2} \approx 4.71$$

Hence, we see that the absolute extrema are the following:

Absolute maximum:
$$f(\frac{7\pi}{6}) = \frac{7\pi}{6} + \sqrt{3} \approx 5.40$$
 Absolute minimum: $f(\frac{\pi}{2}) = \frac{\pi}{2} \approx 1.57$

Absolute minimum:
$$f(\frac{\pi}{2}) = \frac{\pi}{2} \approx 1.57$$