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Section 4.6/4.7: Optimization Problems

Practice HW from Stewart Textbook (not to hand in)

p. 311 # 1-13 odd, 19, 21, 24, 33,       p. 321 # 9, 10  13
Optimization Problems involve using calculus techniques to find the absolute maximum and absolute minimum values (Steps on p. 306)
The following geometry formulas can sometimes be helpful.

Volume of a Cube: 
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, where x is the length of each side of the cube. 

Surface Area of a Cube: 
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, where x is the length of each side of the cube.
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Example 1: Find the two numbers whose sum is 132 and product is a maximum.
Solution:
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Example 2: A farmer has 200 yards of fencing to fence in a rectangular pasture. One side is next to a river and requires no fencing. Find the dimensions of the pasture that will yield a maximum area.
Solution:
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Example 3: Find the point on the graph of 
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Solution: In this problem, our goal is to minimize the distance between the ordered pair (x, y) on the graph of 
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To find the objective equation (the quantity that we want to minimize), we use the distance formula.
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Hence
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To eliminate the radical, we can use the fact minimizing the distance d is equivalent to minimizing the square of the distance, that is, minimizing 
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Our goal is to minimize D. To do this, we must find the critical numbers. Before taking the derivative, D must be in terms on one variable. We use the fact that we were given the function 
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. Hence, the equation for D becomes
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Simplify, this equation becomes 
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or
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 (Use FOIL)
Simplifying gives
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      (Simplify. Note 
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We next find the critical numbers. We set
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Solving for x gives
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(Continued on next page)
Thus, the critical number is x = 1. The second derivative test, where 
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,  can be used to show this point does indeed produce a minimum. We see that 
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 , which is concave up. Since 
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 for all values of x and there are no other critical numbers, we have produced an absolute minimum.
The point x = 1 is the x-coordinate of the point on the graph of 
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. To find the y-coordinate of the point, we substitute into the original function 
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Example 4: A box with a square base and open top must have a volume of 32000 
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Find the dimensions of the box that minimizes the amount of material used.
Solution:
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Example 5: Problem # 19, p. 312. A Norman window has a rectangle surmounted by a semicircle. If the perimeter of the window is 30 ft, set up the objective and constraint equations to find the dimensions of the window so that the greatest amount of light is admitted.
Solution:
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Cost, Revenue and Maximizing Profit (Section 4.7)
The cost function C(x) represents the cost of producing x units of a product.

The revenue function R(x) represents the revenue generated by selling x units of a product. In the general, we define the revenue function as follows:

R(x)  = (the number of units)(price per unit) = xp.

In general, the price per unit can be fixed or depend on a demand function represented by 

p(x). In this case

R(x) = x p(x)

The profit is defined to be the revenue minus the cost. We represent the profit function as P(x) and write

P(x) = R(x) – C(x)

We want to maximize the profit function given by P(x) .

Example 6: Suppose a company discovers that the cost of producing x units of a product is given by 
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 and the demand function for what it can charge for selling x units of this product is given by 
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. Find the number of units that the company must produce and sell to maximize profit.

Solution: On this problem, we must maximize profit. Thus, we must form the profit function 
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. We are already given the cost function, we need to form the revenue function, which is given by
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Using 
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, we find the profit function as follows,
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Using 
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, we find the critical numbers by setting 
[image: image40.wmf]0

)

(

=

¢

x

P

 and solving for x. This gives
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To solve 
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 for x, we use the quadratic formula
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with a = -0.3, b = -4800, and c = 100000. This gives 








(Continued on next page)
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 (Simplify)
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(Simplify)




[image: image47.wmf]6

.

0

5

.

4812

4800

-

±

»

x





(Take square root)
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Note that 
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 and that 
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x = 21 is the only positive critical number and the graph is concave down at this point, 
x = 21 units will produce the maximum profit.
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