Section 5.10: Improper Integrals

Practice HW from Stewart Textbook (not to hand in) p. 431 # 5-31 odd

Areas of Infinite Extent

Example 1: Determine the area under the graph of $f(x) = \frac{1}{x^2}$ for $x \ge 1$

Solution:

The type of integral used to compute an area of infinite extent is called an <u>improper integral</u>.

Definition of Improper Integrals (Type 1)

1.
$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

$$2. \int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

3.
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{-\infty} f(x) dx$$

If the limit of an improper integral exists (approaches a fixed number), then the improper integral is <u>convergent</u>. If the limit does not exist, then the improper integral is <u>divergent</u>.

Fact: Note that $\int_{1}^{\infty} \frac{1}{x^2} dx = 1$ is convergent.

Example 2: Compute
$$\int_{1}^{\infty} \frac{1}{x} dx$$

Example 3: Compute
$$\int_{0}^{\infty} e^{-2x} dx$$
.

Solution:

Example 4: Compute
$$\int_{-\infty}^{0} e^{-2x} dx$$
.

Example 5: Compute
$$\int_{-\infty}^{\infty} x^3 e^{-x^4} dx$$

Discontinuous Integrands

Looks at areas of infinite extent when x approaches a value where the function is undefined.

Example 6: Compute
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

Example 7: Compute
$$\int_{-2}^{2} \frac{1}{(x-1)^3} dx$$

Solution: The function $f(x) = \frac{1}{(x-1)^3}$ is undefined at x = 1. Hence, we want to examine what is happening to the integral near this point. We rewrite the integral as follows:

$$\int_{-2}^{2} \frac{1}{(x-1)^3} dx = \int_{-2}^{1} \frac{1}{(x-1)^3} dx + \int_{1}^{2} \frac{1}{(x-1)^3} dx$$

Hence, we must evaluate both of these integrals. We first evaluate $\int_{-2}^{1} \frac{1}{(x-1)^3} dx$. This

$$\int_{-2}^{1} \frac{1}{(x-1)^3} dx = \lim_{t \to 1^+} \int_{-2}^{t} \frac{1}{(x-1)^3} dx$$

To find $\int \frac{1}{(x-1)^3} dx$, we use a simple *u-du* substitute. We obtain the following:

$$\int \frac{1}{(x-1)^3} dx$$
Let $u = x-1$

$$= \int \frac{1}{u^3} du$$

$$= \int u^{-3} du$$

$$= \frac{u^{-2}}{-2} + C$$

$$= -\frac{1}{2u^2} + C$$

$$= -\frac{1}{2(x-1)^2} + C$$

(Continued on next page)

$$\int_{-2}^{1} \frac{1}{(x-1)^3} dx = \lim_{t \to 1^+} \int_{-2}^{t} \frac{1}{(x-1)^3} dx$$

$$= \lim_{t \to 1^+} -\frac{1}{2(x-1)^2} \Big|_{-2}^{t}$$

$$= \lim_{t \to 1^+} \left(-\frac{1}{2(t-1)^2} - -\frac{1}{2(-2-1)^2} \right)$$

$$= \lim_{t \to 1^+} \left(-\frac{1}{2(t-1)^2} + \frac{1}{2(-3)^2} \right)$$

$$= \lim_{t \to 1^+} \left(-\frac{1}{2(t-1)^2} + \frac{1}{18} \right)$$

As $t \to 1^+$, $-\frac{1}{2(t-1)^2} \to -\infty$. The following chart will help convince yourself of this.

t	$-\frac{1}{2(t-1)^2}$
2	-0.5
1.5	-2
1.1	-50
1.01	-5000
1.001	-500000
1.000001	-50000000

Thus,
$$\int_{-2}^{1} \frac{1}{(x-1)^3} dx$$
 is divergent. Since
$$\int_{-2}^{2} \frac{1}{(x-1)^3} dx = \int_{-2}^{1} \frac{1}{(x-1)^3} dx + \int_{1}^{2} \frac{1}{(x-1)^3} dx$$
,

we can conclude $\int_{-2}^{2} \frac{1}{(x-1)^3} dx$ is divergent (there is no need to evaluate $\int_{1}^{2} \frac{1}{(x-1)^3} dx$).