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Section 4.1: Antiderivatives and Indefinite Integration
Practice HW from Larson Textbook (not to hand in)

p. 224 # 1-25 odd, 41-47 odd, 51
Antidifferentiation or Integration

Suppose we are given a derivative of a function 
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There are many answers for 
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In general, we say that 
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where C is known as the constant of integration.
Antidifferentiation or integration is the opposite of differentiation.


Notation: We use the indefinite integral to denote the antiderivative.
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Thus, 
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Basic Antiderivative (Integration Formulas) (Complete List p. 219)

1. 
[image: image7.wmf]ò

=

dx

k

 



     
[image: image8.wmf]ò

=

dx


     
[image: image9.wmf]ò

=

dx

 

0




2. 
[image: image10.wmf]ò

=

dx

x

n

 



3. 
[image: image11.wmf]ò

=

dx

x

 

1




4. 

[image: image12.wmf]ò

=

dx

e

x





[image: image13.wmf]ò

=

dx

e

kx


      

5. 
[image: image14.wmf]ò

=

dx

x

  

sin




6. 
[image: image15.wmf]ò

=

dx

x

  

cos




7. 
[image: image16.wmf]ò

=

dx

x

  

sec

2




8. 
[image: image17.wmf]ò

=

dx

x

x

  

tan

  

sec



9. 
[image: image18.wmf]ò

=

dx

x

  

csc

2



10. 
[image: image19.wmf]ò

=

dx

x

x

  

cot

  

csc


Example 1: Integrate 
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█

Example 2: Integrate 
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Example 3: Integrate
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Example 4: Integrate 
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Properties of Integration

1. 
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 , where k is a constant – in our case a real number)

2. 
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Example 5: Integrate
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Example 6: Integrate 
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Example 7: Integrate 
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Differential Equations

Differential equations are equations involving one or more of its derivatives. A simple example of a differential equation is given by
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To find f (x), we integrate both sides with respect to x.
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which gives
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 ← known as the general solution

The general solution expresses the solution in terms of the arbitrary constant C.  If we are given an initial condition (a value for the function at a particular value of x), we can find

the particular solution (where we find a particular value for the integration constant C).
Example 8: Solve the differential equation 
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Example 9: Solve the differential equation given 
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Solution: To solve the differential equation, we must find 
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To find the particular solution for the first derivative, we use the initial condition for the first derivative given by 
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Substituting 
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To find the particular solution for the function 
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, we use the initial condition for the fist derivative given by 
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Substituting 
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 gives the particular solution of     
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Vertical Motion
Recall that given a position function 
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Velocity: 
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Acceleration: 
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Hence, since integration is the opposite of differentiation, we can say:

Velocity: 
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Acceleration: 
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Example 10: A ball is thrown vertically upward from the ground at an initial height of 

5 ft with an initial velocity of 64 ft/s. 

a. Find the position function 
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b. How high will the ball go?
c. How long thus it take for the ball to hit the ground.

Solution: Part a. In this problem, we start with the fact that the acceleration due to gravity of a freely falling object is 
[image: image59.wmf]2

s

/

ft

32

-

 (
[image: image60.wmf]2

s

/

m

8

.

9

-

 in metric). Thus we can say that the acceleration equation is given by
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Since acceleration is the derivative of the velocity, we must reverse the process and integrate the acceleration to get the velocity. This gives the following.
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To find the constant C, we can use the fact that the initial velocity (the velocity at time

 t = 0) is 64 ft/s, which translates mathematically as 
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(continued on next page)
Thus, we see that the velocity equation is 
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To find the constant D, we use the fact that the initial height (initial position) of the height at time t = 0 is 5 ft. Mathematically, this translates as 
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Thus the position function for the ball height  is   
[image: image79.wmf]5

64

16

)

(

2

+

+

-

=

t

t

t

s

. 

Part b. The ball reaches its maximum height at the time when the velocity 
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. Hence we take the velocity equation we found in part a, set it equal to 0, and solve for t. This gives
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Thus, the object reaches its maximum height after t = 2 seconds. To find its height at this time, we simply substitute this value of t into the position equation. This gives
Height of ball = 
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This, the ball goes 69 ft high.









(continued on next page)

Part c. In this problem, we want to find the time t it takes for the ball to go up, come back down, and hit the ground. When the ball hits the ground, its height is 0. Thus, we can find t by setting the height function 
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 equal to 0 and solving for t. This gives 
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We use the quadratic formula to solve this equation. Recall that this formula says that the solutions to the quadratic equation 
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If we replace x with t and assign a = -16, b = 64, and c = 5, we see that
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Thus, the ball will hit the ground after 4.1 seconds.
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