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Section 7.1: Modeling with Differential Equations
Practice HW from Stewart Textbook (not to hand in)

p. 503 # 1-7 odd
Differential Equations
Differential Equations are equations that contain an unknown function and one or more of its derivatives. Many mathematical models used to describe real-world problems rely on the use of differential equations (see examples on pp. 501-503). 
Most of the differential equations we will study in this chapter involve the first order derivative and are of the form
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Our goal will be to find a function 
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 that satisfies this equation. The following two examples illustrate how this can be done for a basic differential equation and introduce some basic terminology used when describing differential equations.
Example 1: Find the general solution of the differential equation 
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Solution:
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The general solution (or family of solutions) has the form 
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, where C is an arbitrary constant. When a particular value concerning the solution (known as an initial condition) of the form 
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 (read as 
[image: image6.wmf]0

y

y

=

 when 
[image: image7.wmf]0

x

x

=

) is known, a particular solution, where a particular value of C is determined, can be found. The next example illustrates this.
Example 2: Find the particular solution of the differential equation 
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Solution:
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To check whether a given function is a solution of a differential equation, we find the necessary derivatives in the given equation and substitute. If the same quantity can be found on both sides of the equation, then the function is a solution.
Example 3: Determine if the following functions are solutions to the differential equation 
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Solution:













█
Example 4: Verify that 
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 is a solution of the initial value problem 
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 on the interval 
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Solution:












█

Example 5: For what value of r does the function 
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 satisfy the differential equation 
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Solution: For the function 
[image: image17.wmf]rx

e

y

=

 to be a solution, we must, after computing the necessary derivative, obtain the same quantities on both sides of the equation after substitution. For 
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, we must compute, using the chain rule applied to the exponential function of base e, 
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Thus, 
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 to be a solution.












█























































































_1216807420.unknown

_1216808204.unknown

_1216808894.unknown

_1216809318.unknown

_1216809718.unknown

_1216809719.unknown

_1216809717.unknown

_1216809133.unknown

_1216808254.unknown

_1216807470.unknown

_1216808127.unknown

_1216807453.unknown

_1216801199.unknown

_1216801242.unknown

_1216801507.unknown

_1216801228.unknown

_1216800972.unknown

_1216801047.unknown

_1216800323.unknown

_1216800843.unknown

