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Section 7.2: Direction Fields and Euler’s Methods
Practice HW from Stewart Textbook (not to hand in)

p. 511 # 1-13, 19-23 odd
For a given differential equation, we want to look at ways to find its solution. In this chapter, we will examine 3 techniques for determining the behavior for the solution. These techniques will involve looking at the solutions graphically, numerically, and analytically.

Examining Solutions Graphically – Direction Fields

Recall from Calculus I that for a function 
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 gives the slope of the tangent line at a particular point (x, y) on the graph of y(x). Suppose we consider a first order differential equations of the form
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For a solution y of this differential equation, 
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 evaluated at the point 
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 represents the slope of the tangent line to the graph of y(x) at this point.
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Even though we do not know the formula for the solution y(x), having the differential equation 
[image: image7.wmf])

,

(

y

x

f

y

=

¢

 gives a convenient way for calculating the tangent line slopes at various points. If we obtain these slopes for many points, we can get a good general idea of how the solution is behaving. 

Direction Fields (sometimes called slope fields) involves a method for determining the behavior of various solutions on the x-y plane by calculating the tangent line slopes at various points.
Example 1: Sketch the direction field for the differential equation 
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. Use the result to sketch the graph of the solution with initial condition 
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Solution: In this problem, we plot points for the four quadrant regions and the x and y axis (we will fill in the first quadrant chart in class).        
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We can sketch the slopes on the following graph (will do in class):
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Obviously, as can be seen by the last example, sketching direction fields by hand can be a very tedious task. However, Maple can sketch a direction field quickly. For the differential equation 
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 given in Example 1, the following commands in Maple can be used to sketch the direction field:
> with(DEtools): with(plots):
Warning, the name changecoords has been redefined
> de := diff(y(x),x)=x^2-y(x);
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> dfieldplot(de, y(x),x=-10..10,y=-30..30, color = black, arrows = MEDIUM, color = blue);
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Notes
1. 
The direction fields for differential equations of the form 
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, where the right 

is strictly a function of x have the same slope fields for points with the same x coordinate.















Example: Plot of 
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2.   The direction fields for differential equations of the form 
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, where the right 

is strictly a function of y have the same slope fields for points with the same y coordinate. A differential equation is strictly a function of the dependent variable y is known as an autonomous equation.







Example: Plot of 
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3. 
A constant solution of the form y = K of an autonomous where the direction field 

slopes are zero, that is, where 
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 and the solution y neither increases or decreases, is known as an equilibrium solution.
Example: 
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 the equilibrium solution is y = 2.
Example 2: Given the direction field plot of the differential equation 
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a. Sketch the graphs of solutions that satisfy the given initial conditions:
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      b. 
Find all equilibrium solutions.

Solution:
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Finding Solutions Numerically – Euler’s Method
A common way to examine the solution of a differential equations is to approximate it numerically. One of the more simpler methods for doing this involves Euler’s method.
Consider the initial value problem
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over the interval 
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. Suppose we want to find an approximation to the solution y(x) given by the following graph:
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Starting at the point 
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 on the x axis. Let h (known as the step size) be the space between the points on the x-axis. Then 
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, etc. Consider the tangent line at the point 
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. Since the derivative is used to calculate the slope of the tangent line, it can be seen that
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Hence,
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Now, consider the line through the points 
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In general,
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Summarizing,


Euler’s Method

Given the initial value problem 
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we calculate 
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where h is the step size between endpoints on the x-axis.

Example 3: Use Euler’s Method with step size of 0.5 to estimate y(2), where y(x) is the solution to the initial value problem 
[image: image54.wmf]4

)

0

(

 

,

3

2

=

-

=

¢

y

y

x

y

. Sketch the graph of the iterates used in finding the estimate.
Solution:
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Notes 
1. 
Using techniques that can studied in a differential equations course, it can be shown that the exact solution to the initial value problem 
[image: image55.wmf]4

)

0

(

 

,

3

2

=

-

=

¢

y

y

x

y

 given in Example 3 is
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The approximation to y(2) (what y is when x = 2) was 
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 Thus the error between the approximation and the exact value is 
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2.
By decreasing the step size h, the accuracy of the approximation in most cases will be better, with a tradeoff in more work needed to achieve the approximations. For example, the chart below shows the approximations generated when the step size for Example 3 is cut in half to h = 0.25.
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Here, the approximation to 
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The following represents a graph of the curves produced by Euler’s method for various values of h and the exact solution y(x).
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3. 
There are other numerical methods that can achieve better accuracy with less work 

than Euler’s method. However, the underlying approach used in many of these 


methods stem from Euler’s approach.
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