Section 7.2: Direction Fields and Euler’s Methods

Practice HW from Stewart Textbook (not to hand in)
p. 511 # 1-13, 19-23 odd

For a given differential equation, we want to look at ways to find its solution. In this
chapter, we will examine 3 techniques for determining the behavior for the solution.
These techniques will involve looking at the solutions graphically, numerically, and
analytically.

Examining Solutions Graphically — Direction Fields

dy
dx
line at a particular point (X, y) on the graph of y(x). Suppose we consider a first order
differential equations of the form

Recall from Calculus I that for a function y(x), y'=—= gives the slope of the tangent

y'=1(xy).

For a solution y of this differential equation, y’ evaluated at the point (x;,y;) represents
the slope of the tangent line to the graph of y(x) at this point.

Y1

Even though we do not know the formula for the solution y(x), having the differential
equation y' = f(x,y) gives a convenient way for calculating the tangent line slopes at
various points. If we obtain these slopes for many points, we can get a good general idea
of how the solution is behaving.



Direction Fields (sometimes called slope fields) involves a method for determining the
behavior of various solutions on the x-y plane by calculating the tangent line slopes at
various points.

Example 1: Sketch the direction field for the differential equation y’ = x2 — y . Use the
result to sketch the graph of the solution with initial condition y(0) =1.

Solution: In this problem, we plot points for the four quadrant regions and the x and y
axis (we will fill in the first quadrant chart in class).

1° Quadrant 2"! Quadrant
X1y y'=x2-y X |y y=x2—y
1 1 301 8
2 1 211 3
3 1 -1 1 0
1 2 3| 2 7
2 2 2| 2 2
3| 2 1| 2 -1
1 3 3] 3 6
2 | 3 2| 3 1
3| 3 -1 ] 3 -2
3" Quadrant 4™ Quadrant
XY | y=x*-y XY y=xtoy
3] -1 10 1] -1 2
2|1 2 | 1 5
11 2 3 | -1 10
3| 2 11 1] 2 3
2| 2 6 2 | 2 6
1] 2 3 3 | -2 11
-3 | -3 12 1| -3 4
-2 | -3 7 2| -3 7
-1 | -3 3| -3 12




X-axis
XY y=xtoy
310 9
210 4
-1 0 1
0 0 0
1 0 1
2 0 4
3 0 9

X y'=x“—y
0| -3 3
0| 2 2
0| -1 1
0] 0 0
0| 1 1
0| 2 2
0| 3 3

We can sketch the slopes on the following graph (will do in class):
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Obviously, as can be seen by the last example, sketching direction fields by hand can be a
very tedious task. However, Maple can sketch a direction field quickly. For the

differential equation y' = X2 — y given in Example 1, the following commands in Maple

can be used to sketch the direction field:

> with(DEtools): with(plots):
Warning, the name changecoords has been redefined

> de = diff(y(x),x)=x"2-y(X);
de := % y(x) = X2 - y(¥)

> dfieldplot(de, y(x),x=-10..10,y=-30..30, color

arrows = MEDIUM, color = blue);
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Notes

1. The direction fields for differential equations of the form y" = f (x), where the right
is strictly a function of x have the same slope fields for points with the same x
coordinate.
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Example: Plot of y' = t2 + cos(t)

Direction Field Plat of y'= »"2 + cos(t)
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2. 1The direction fields for differential equations of the form y’ = f(y), where the right

is strictly a function of y have the same slope fields for points with the same y
coordinate. A differential equation is strictly a function of the dependent variable y is
known as an autonomous equation.
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Example: Plot of y'=(2-y)

Direction Field Plat of y'= 2-y
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3. A constant solution of the form y = K of an autonomous where the direction field
slopes are zero, that is, where y’ =0 and the solution y neither increases or decreases,

is known as an equilibrium solution.

Example: y'=(2-y) the equilibrium solution isy = 2.
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Example 2: Given the direction field plot of the differential equation y’

y(1- )

Direction Field Plot of y'

l.;lilnu.ﬁ.\i___-
Illiﬁu.ﬁ..\_..___
l..,l..r:u.ﬁ.\.-.___
lgl.,ﬁu.l..\...__‘
Illirnu.ﬁ.\.-.___
l..,l..r:u.ﬁ.\.-.__-
lgl.ruu.l..\...__-
Illirnu.ﬁ.\.-._..
l..,l..r:u.ﬁ.\.-.__-
lgl.ri.l..\...__-
st}
il
—r—r o}

Iililn._....\h.___
l;l..ln._.\.\.h.___
e
1 .___
—r—rra )}
l.;l-.t:-..ﬁ.\i...-
e
1 .___
—rranf
l.ul-.ﬁ-..ﬁ.\i____
—ar )}

L LY
LY
5 Y,
Y,
AR,
5 Y,
5 Y,
Y,
AR,
5 Y,
5 Y,
Y,
Y,
5NN,
5N

sARA
ARl
AAAE
Pl
sAAM
AAAE
AAAE
Faral ol
sAAM
AAAE
AAAE
Pl
sAAM
FARS
SAAE

T e T T e e T T T T e T e Tl e

TETREY
ARRAANY
Haa Y,
ThAAAY
L
LAY
LY
LY
LAY
LY
LY
LY
LAY
LY
LR

| LN

e e e e T e e e e e e e e e e T e e e T e e e

%

AR
AR
A
AR
AR
Armr)
LY
At
At
Armr)
LY
At
At
Armr)

T e T T T e o e T T T T T T

T e

-.._. LN S S
._._. LA
..__. LN S
._._. RN AP
-.._. -/r..._unri.[...l
._._. LN A .
n__. LN S
_.._. RN AP
u._. -/r..._unri.[...l
n._. LN A .
n__. LN S
_.._. R AP
LI AL
RIS
R
Bt
n__. LN R
n._. e o
n._. L
n._. LS R
RIS
__._. LN AP
R R
n._. robn e
RIS
__._. LN AP
R R
n._. rob v
RIS

=2

iii. y(0)

ii. y(0)=3
b. Find all equilibrium solutions.

a. Sketch the graphs of solutions that satisfy the given initial conditions:
i. y(0)=1

Solution



Finding Solutions Numerically — Euler’s Method

A common way to examine the solution of a differential equations is to approximate it
numerically. One of the more simpler methods for doing this involves Euler’s method.

Consider the initial value problem
y'=F(xy) ¥(Xo) = Yo.

over the interval x, =a < x <b. Suppose we want to find an approximation to the
solution y(x) given by the following graph:

y(x)

Starting at the point (X, Yo ) specified by the initial condition y(xq) =y, , we want to
approximate to solution at equally spaced points beyond x, on the x axis. Let h (known
as the step size) be the space between the points on the x-axis. Then x; = Xy +h,

Xo =X +h, X3 =X, +h, etc. Consider the tangent line at the point (xg, yy) that passes

through the point (x;, y;) . Since the derivative is used to calculate the slope of the
tangent line, it can be seen that

Slope of the tangent line

=y =F (X,
to y(x) at (Xg, Yop) y|(X0|YO) (X0 ¥o)



Hence,

Slope through .
Slope at tangent line at (Xq, Yq)
(X0, Yo) and (xq, Y1)
Y1 = Yo
——— = F(Xq,
— (X0, Yo)
Yi—Yo = (% —X%g)F(Xo,Yo0)
yi—Y¥o = h F(X Yo)

Now, consider the line through the points (x;,y;) and (X,,Y,).

Slope through
(X1, y1)and (x2, ¥2)
Yo— ¥

= = F(Xq,
X, — X, (X1, Y1)

Yo = Yi+h F(x,y1)

Slope at tangent line at (xq, 1) = F(x1, 1)

Q

In general,
Yn=Y¥nat h I:(Xn—li yn—l)

Summarizing,

Euler’s Method

Given the initial value problem
y'=F(XY), y(Xo) = Yo
we calculate (x,,Yy,) from (X, Y1) by computing
Xn=Xp_1 +h
Yn =Yna +h F(Xq1, Y1)

where h is the step size between endpoints on the x-axis.
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Example 3: Use Euler’s Method with step size of 0.5 to estimate y(2), where y(X) is the
solution to the initial value problem y' =2x -3y, y(0) = 4. Sketch the graph of the
iterates used in find the estimate.

Solution:
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Notes
1. Using techniques that can studied in a differential equations course, it can be shown

that the exact solution to the initial value problem y' = 2x -3y, y(0) = 4 given in
Example 3 is
3x 2 2

y(x) —ﬁe_ +—=X—-—=
9 3 9

The approximation to y(2) (whaty is when x = 2) was y, =1.375. The exact value is
-3(2) | 3(2) _2_ %e—ﬁ

y(2) = ﬁe + 4.2, ~1.1215769. Thus the error between
3 9 9 3 9
the approximation and the exact value is

| y(2) -y, |=|1.1215769 —1.375 | ~| —0.253423 | = 0.253423.

By decreasing the step size h, the accuracy of the approximation in most cases will be
better, with a tradeoff in more work needed to achieve the approximations. For
example, the chart below shows the approximations generated when the step size for
Example 3 is cut in half to h = 0.25.

Exact Value
Xp =Xp_1 +h Yn = Yna +h F(Xq1, Y1) y(x) = § -3x +EX _E
=X, +0.25 =Yn1 +0.25(2%_1 —3Y,1) 3 9
Xo =0 Yo =4 y(0)_§e° Zo- 2 396 .
X =Xo+h Y1 ="Yo +0.25(2Xq —3Yy) y(0.25) = 38 ,-3(0.25) +_(_0_25) 2
=0+0.25 = 4+0.25(2(0) — 3(4)) 3 9
=0.25 =4+0.25(0-12) = 4+ (-3) =1 ~1.938881000;
X, =0.5 y, =0.375 y(0.5) ~1.053216232
X3 =0.75 y3 =0.34375 y(0.75) ~ 0.7227967261
Xz =1 y, = 0.4609375 y(1) ~ 0.6546565109
X5 =1.25 ys =0.6152343750 y(1.25) ~ 0.7104082603
Xg =1.5 Y = 0.7788085938 y(L5) ~ 0.8246824299
X, =1.75 y, =0.9447021484 y(L.75) ~ 0.9666006336
Xg =2 yg =1.111175537 y(2) ~1.1215769542

Here, the approximation to y(2) ~1.1215769542 is yg =1.111175537 and the the
error between the approximation and the exact value is

| y(2) - yg |~|1.1215769 —1.1111755| ~| 0.010401 |= 0.010401.
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The following represents a graph of the curves produced by Euler’s method for various
values of h and the exact solution y(x).

Solubon cuve and vanous h values e Eulers method lor approcamalng y' = 2x-Jy, vl =4

4 solulion yit)
_ h=0.5

3 h=025
2] 0.4
1_

o) 2
1
_2—

3. There are other numerical methods that can achieve better accuracy with less work
than Euler’s method. However, the underlying approach used in many of these
methods stem from Euler’s approach.



