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Section 7.2: Direction Fields and Euler’s Methods 
 

Practice HW from Stewart Textbook (not to hand in) 
p. 511 # 1-13, 19-23 odd 

 
For a given differential equation, we want to look at ways to find its solution. In this 
chapter, we will examine 3 techniques for determining the behavior for the solution. 
These techniques will involve looking at the solutions graphically, numerically, and 
analytically. 
 
Examining Solutions Graphically – Direction Fields 
 
Recall from Calculus I that for a function )(xy , 

dx
dyy =′  gives the slope of the tangent 

line at a particular point (x, y) on the graph of y(x). Suppose we consider a first order 
differential equations of the form 
 

),( yxfy =′ . 
 
For a solution y of this differential equation, y′  evaluated at the point ),( 11 yx  represents 
the slope of the tangent line to the graph of y(x) at this point. 

 
Even though we do not know the formula for the solution y(x), having the differential 
equation ),( yxfy =′  gives a convenient way for calculating the tangent line slopes at 
various points. If we obtain these slopes for many points, we can get a good general idea 
of how the solution is behaving.  

1x  

1y  
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Direction Fields (sometimes called slope fields) involves a method for determining the 
behavior of various solutions on the x-y plane by calculating the tangent line slopes at 
various points. 
 
Example 1: Sketch the direction field for the differential equation yxy −=′ 2 . Use the 
result to sketch the graph of the solution with initial condition 1)0( =y . 
 
Solution: In this problem, we plot points for the four quadrant regions and the x and y 
axis (we will fill in the first quadrant chart in class).         
                                                       

                                                                             
                                                                              
 
 
 
 
   
                                 
 
 
 
 
 
 
   
 
 

 
  
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2nd  Quadrant 
 
x 

 
y 

 
yxy −=′ 2  

-3 1 8 

-2 1 3 
-1 1 0 
-3 2 7 
-2 2 2 
-1 2 -1 
-3 3 6 
-2 3 1 
-1 3 -2 

1st Quadrant 
 
x 

 
y 

 
yxy −=′ 2  

1 1  

2 1  
3 1  
1 2  
2 2  
 3 2  
1 3  
 2 3  
 3 3  

3rd Quadrant 
 
x 

 
y 

 
yxy −=′ 2  

-3 -1 10 

-2 -1 5 
-1 -1 2 
-3 -2 11 
-2 -2 6 
-1 -2 3 
-3 -3 12 
-2 -3 7 
-1 -3 4 

4th Quadrant 
 
x 

 
y 

 
yxy −=′ 2  

1 -1 2 

2 -1 5 
3 -1 10 
1 -2 3 
2 -2 6 
 3 -2 11 
1 -3 4 
 2 -3 7 
 3 -3 12 
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We can sketch the slopes on the following graph (will do in class): 
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x-axis 
 
x 

 
y 

 
yxy −=′ 2  

-3 0 9 

-2 0 4 
-1 0 1 
0 0 0 
1 0 1 
2 0 4 
3 0 9 

y-axis 
 
x 

 
y 

 
yxy −=′ 2  

0 -3 3 

0 -2 2 
0 -1 1 
0 0 0 
0 1 -1 
0 2 -2 
0 3 3 

x 

y 
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Obviously, as can be seen by the last example, sketching direction fields by hand can be a 
very tedious task. However, Maple can sketch a direction field quickly. For the 
differential equation yxy −=′ 2  given in Example 1, the following commands in Maple 
can be used to sketch the direction field: 
 
> with(DEtools): with(plots): 
Warning, the name changecoords has been redefined 
> de := diff(y(x),x)=x^2-y(x); 

de := d
 dx

 y x( ) = x 2 - y x( )

 
> dfieldplot(de, y(x),x=-10..10,y=-30..30, color = black, 
arrows = MEDIUM, color = blue); 
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Notes 
1.  The direction fields for differential equations of the form )(xfy =′ , where the right  

is strictly a function of x have the same slope fields for points with the same x 
coordinate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: Plot of )cos(2 tty +=′  
 

 
 

x 

y 

1x  2x  

Slope Fields  
are same at 

each x coord 
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2. 1The direction fields for differential equations of the form )(yfy =′ , where the right  
is strictly a function of y have the same slope fields for points with the same y 
coordinate. A differential equation is strictly a function of the dependent variable y is 
known as an autonomous equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: Plot of )2( yy −=′  
 

 
3.  A constant solution of the form y = K of an autonomous where the direction field  

slopes are zero, that is, where 0=′y  and the solution y neither increases or decreases, 
is known as an equilibrium solution. 

 
Example: )2( yy −=′  the equilibrium solution is y = 2. 

x 

y 

1y  

2y  
Slope Fields  
are same at 

each y coord 
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Example 2: Given the direction field plot of the differential equation )9/1( 2yyy −=′ . 
 

 
a. Sketch the graphs of solutions that satisfy the given initial conditions: 

i. 1)0( =y     iii. 2)0( −=y  
ii. 3)0( =y  

      b.  Find all equilibrium solutions. 
 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 
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Finding Solutions Numerically – Euler’s Method 
 
A common way to examine the solution of a differential equations is to approximate it 
numerically. One of the more simpler methods for doing this involves Euler’s method. 
 
Consider the initial value problem 
 

00 )(  ),,( yxyyxFy ==′ . 
 
over the interval bxax ≤≤=0 . Suppose we want to find an approximation to the 
solution y(x) given by the following graph: 
 

 
 
 
Starting at the point ),( 00 yx specified by the initial condition 00 )( yxy = , we want to 
approximate to solution at equally spaced points beyond 0x  on the x axis. Let h (known 
as the step size) be the space between the points on the x-axis. Then hxx += 01 , 

hxx += 12 , hxx += 23 , etc. Consider the tangent line at the point ),( 00 yx  that passes 
through the point ),( 11 yx . Since the derivative is used to calculate the slope of the 
tangent line, it can be seen that 
 

),(
),(at  )( to
line tangent  theof Slope

00),(
00 00

yxFy
yxxy yx =′=  

 
 

y(x) 
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Hence, 
 

),(                                         
),(                                  

),( )(                           

),(                          

),(at  line at tangent Slope        
),( and ),(
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Now, consider the line through the points ),( 11 yx  and ),( 22 yx .  
 

),(                                     

),(                          

),(),(at  line at tangent Slope        
),( and ),(

 throughSlope
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11
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yxFhyy
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−
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In general, 
 

),(  111 −−− += nnnn yxFhyy  
 
Summarizing, 
 
 

Euler’s Method 
 
Given the initial value problem  
 

00 )(  ),,( yxyyxFy ==′  
 
we calculate ),( nn yx  from ),( 11 −− nn yx  by computing  
 

hxx nn += −1  
 

),(  111 −−− += nnnn yxFhyy  
 
where h is the step size between endpoints on the x-axis.
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Example 3: Use Euler’s Method with step size of 0.5 to estimate y(2), where y(x) is the 
solution to the initial value problem 4)0( ,32 =−=′ yyxy . Sketch the graph of the 
iterates used in find the estimate. 
 
Solution: 
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Notes  
1.  Using techniques that can studied in a differential equations course, it can be shown 

that the exact solution to the initial value problem 4)0( ,32 =−=′ yyxy  given in 
Example 3 is 

9
2

3
2

9
38)( 3 −+= − xexy x  

 
The approximation to y(2) (what y is when x = 2) was 375.14 =y . The exact value is 

.1215769.1
9
2

3
4

9
38

9
2)2(

3
2

9
38)2( 6)2(3 ≈−+=−+= −− eey  Thus the error between 

the approximation and the exact value is  
 

253423.0  |253423.0|  |375.11215769.1|  |)2(| 4 =−≈−=− yy . 
 
2. By decreasing the step size h, the accuracy of the approximation in most cases will be 

better, with a tradeoff in more work needed to achieve the approximations. For 
example, the chart below shows the approximations generated when the step size for 
Example 3 is cut in half to h = 0.25. 

 

 
Here, the approximation to 421.12157695)2( ≈y  is 71.111175538 =y  and the the 
error between the approximation and the exact value is  

 
010401.0  |010401.0|  |1111755.11215769.1|  |)2(| 8 =≈−≈− yy . 
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+=
+=

−
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)32(0.25       
),(  
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−−−
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Exact Value 

9
2

3
2

9
38)( 3 −+= − xexy x  

00 =x  40 =y  4
9
36

9
2)0(

3
2

9
38)0( 0 ==−+= ey  

25.0     
25.00     

01

=
+=
+= hxx

 
1(-3)412)-0.25(04      

))4(3)0(2(25.04     
)32(25.0 0001

=+=+=
−+=
−+= yxyy

0;1.93888100             
9
2)25.0(

3
2

9
38)25.0( )25.0(3

≈

−−+= −ey

=2x 0.5 =2y 0.375 21.05321623)5.0( ≈y  
=3x 0.75 =3y 0.34375 610.72279672)75.0( ≈y  
=4x 1 =4y 0.4609375 090.65465651)1( ≈y  

=5x 1.25 =5y 0.6152343750 3.7104082600)25.1( ≈y  
=6x 1.5 =6y 0.7788085938 9.8246824290)5.1( ≈y  
=7x 1.75 =7y 0.9447021484 360.96660063)75.1( ≈y  
=8x 2 =8y 1.111175537 421.12157695)2( ≈y  
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The following represents a graph of the curves produced by Euler’s method for various 
values of h and the exact solution y(x). 
 

 
 
 
 
3.  There are other numerical methods that can achieve better accuracy with less work  
 than Euler’s method. However, the underlying approach used in many of these  
 methods stem from Euler’s approach. 
 
 
 
 
 
 
 
 
           


