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Section 8.1: Sequences
Practice HW from Stewart Textbook (not to hand in)

p. 565 # 3-33 odd
Sequences
Sequences are collection of numbers or objects that is ordered by the positive integers.
Notation: 
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   (known as the terms of the sequence).
Example 1: Write the first five terms of the sequence 
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Example 2: Write the first five terms of the sequence 
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Describing the nth term of a sequence
Involves writing a formula describing the pattern the sequence of numbers follows.

Example 3: Find a formula for the general term 
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█

Example 4: Find a formula for the general term 
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Solution:
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Convergence of Sequences
Sequences whose behavior approaches a limiting value are said to converge to this value

Example 5: What value does the sequence 
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Definition: A sequence 
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which is read as 
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 approaches L as n approaches 
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 if we can make the terms 
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 as close to L as we like by taking n sufficiently large. If 
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 exists, then the sequence is convergent. Otherwise, it is divergent.

Useful Facts for Showing Convergence of Sequences
1. L Hopital’s Rule for indeterminate forms 
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2. Absolute Value Theorem: If 
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3. Using Maple to graph.

Example 6: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution:
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Example 7: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution:
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Example 8: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution:
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Example 9: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution:
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Example 10: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution: Note if we compute 
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 directly, we obtain 
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, which is an indeterminant form (this is not necessarily zero!). However, we can evaluate this limit by rewriting the sequence formula using some basic algebra. We have
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Thus, the sequence 
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Example 11: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.
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Factorial

Recall that 
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Note: 
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Example 12: Compute 
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Example 13: Determine whether the sequence 
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 converges or diverges. If the sequence converges, find the limit.

Solution: Taking the 
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 gives the indeterminant form 
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. However, using L’ Hopital’s rule to find the limit is not practical since taking the derivative of n! is not trivial. However, Maple can be used to easily plot the behavior of the terms in this sequence. This can be accomplished with the following two commands:
> f := n -> exp(n)/factorial(n);
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> plot([seq([i, f(i)], i = 1..20)], style = point, view = [-2..20, -2..10], thickness = 2, title = "Graph of sequence e^n/n!");
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Thus, it appears that 
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