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Section 8.2: Series
Practice HW from Stewart Textbook (not to hand in)

p. 575 # 9-15 odd, 19, 21, 23, 25, 31, 33
Infinite Series

Given an infinite sequence 
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is called an infinite series.

Note: 
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 is the infinite sequence 
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 is an infinite series.
Consider
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Note that 
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 is a sequence of numbers called a sequence of partial sums.

Definition: For an infinite series 
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If the sequence of partial sums 
[image: image11.wmf]}

{

n

S

 converges to S, the series 
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 converges. The limit S is the sum of the series
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If the sequence 
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 diverges, then the series 
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 diverges.

Example 1: Find the first five sequence of partial sum terms of the series 
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Find a formula that describes the sequence of partial sums and determine whether the sequence converges or diverges.

Solution:
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Example 2: Find the first five sequence of partial sum terms of the series 
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Find a formula that describes the sequence of partial sums and determine whether the sequence converges or diverges.

Solution:
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Geometric Series
A geometric series is given by
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with ratio r.

Notes

1. 
The geometric series converges if and only if  
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If 
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, then the geometric series diverges.

2.
The value a is the first term of the series.

3.
The ratio r is the factor you multiply the previous term by to get the next one. That is,
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Example 3: Determine whether the series 
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 is convergent or divergent. If convergent, find its sum.
Solution: 
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Example 4: Determine whether the series 
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 is convergent or divergent. If convergent, find its sum.

Solution: 
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Example 5: Determine whether the series 
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 is convergent or divergent. If convergent, find its sum.

Solution: 
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Properties of Series (p. 573) If 
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1. 
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2. 
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3. 
[image: image31.wmf]å

å

å

¥

=

¥

=

¥

=

-

=

-

1

1

1

)

(

n

n

n

n

n

n

n

b

a

b

a


Example 6: Determine whether the series 
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 is convergent or divergent. If convergent, find its sum.

Solution: 
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Applications of Geometric Series

Example 7: Express 
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 as a ratio of integers.
Solution: Note that we can write the given number as
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This is a geometric series with 
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. Also, for this series, a = 0.73. Thus, the number can be expressed as the following ratio.
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Tests For Non-Geometric Series

Most series are not geometric – that is, there is not a ratio r that you multiply each term to get to the next term. We will be looking at other ways to determine the convergence and divergence of series in upcoming sections. 
Some other ways to test series

1. 
Divergence Test: If the sequence 
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 does not converge to 0, then the series 
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diverges. Note: This is only a test for divergence – if the sequence 
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0 does not necessarily mean the series  
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2.
Examine the partial sums to determine convergence or divergence (Examples 1 and 2 

of this section)

3.
Techniques discussed in upcoming sections.
Example 8: Demonstrate why the series 
[image: image42.wmf]K

+

+

+

+

=

+

å

¥

=

11

4

9

3

7

2

5

1

3

2

1

n

n

n

 is not geometric. Then analyze whether the series is convergent or divergent.
Solution: 
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Example 9:  Analyze whether the series 
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Solution: 
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