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Section 8.3: The Integral and Comparison Tests; Estimating Sums
Practice HW from Stewart Textbook (not to hand in)

p. 585 # 3, 6-12, 13-25 odd
In this section, we want to determine other methods for determining whether a series converges or diverges.

The Integral Test
For a function f, if  f (x) > 0, is continuous and decreasing for 
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either both converge or both diverge.

Note: The integral test is only a test for convergence or divergence. In the case of convergence, it does not find a value for the sum of the series.
Example 1: Determine the convergence or divergence of the series
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Example 2: Determine the convergence or divergence of the series
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Solution: We start by writing the formula for the sequence as a function of x, that is, we write 
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. We should note first of all that for  x > 2 , 

1. 
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 is always positive (> 0), 2. continuous (the function is only undefined when 
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 and when x = 1 since ln 1 = 0), and decreasing ), and 3. decreasing (as 
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. The following graph of this function generated using Maple should help convince you of these facts:
> f := x -> 1/(x*ln(x)^2);
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> plot(f(x), x = 2..10, thickness = 2, view = [-1..10,  

  -2..2], title = "Graph of f(x) = 1/(x*ln(x)^2");
[image: image13.emf]
Thus, the integral test can be applied. We first set up the improper integral of the function and integrate as follows:







                 (continued on next page)
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Since the improper integral evaluates to a fixed number 
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, it is convergent. Thus by the integral test, the series 
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Example 3: Show why the integral test cannot be used to analyze the convergence or divergence of the series
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p-Series and Harmonic Series
A p-series series is given by
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If p = 1, then
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 is called a harmonic series.
Convergence of p – series

A p-series
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1. 
Converges if p > 1. 
2.
Diverges if 
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Example 4: Determine whether the p-series 
[image: image22.wmf]K

+

+

+

+

+

25

1

16

1

9

1

4

1

1

 is convergent or divergent. 
Solution: 
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Example 5: Determine whether the p-series 
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Example 6: Determine whether the p-series 
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Making Comparisons between Series that are Similar

Many times we can determine the convergence or divergence of a series by comparing it with the known convergence or divergence of a related series. For example, 
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Under the proper conditions, we can use a series where it is easy to determine the convergence or divergence and use it to determine convergence or divergence of a similar series using types of comparison tests. We will examine two of these tests – the direct comparison test and the limit comparison test.

Direct Comparison Test


Suppose that 
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2. If 
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Note: Most of the time, we will compare the given series to a p-series or a geometric series.

Example 7: Determine whether the series 
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Example 8: Determine whether the series 
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Example 9: Demonstrate why the direct comparison test cannot be used to analyze the convergence or divergence of the series 
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Limit Comparison Test
Suppose that 
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  where L is a finite number and L > 0. 

Then either 
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Note: This test is useful when comparing with a p-series. To get the p-series to compare with take the highest power of the numerator and simplify.

Example 10: Determine whether the series 
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