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Section 8.6/8.7: Taylor and Maclaurin Series

Practice HW from Stewart Textbook (not to hand in)

p. 604 # 3-15 odd, 21-27 odd

p. 615 # 5-25 odd, 31-37 odd
Taylor Series

In this section, we discuss how to use a power series to represent a function.

Definition: If 
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which is called a Taylor series at x = a.

If a = 0, then
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is the Maclaurin series of f centered at x = 0.
Example 1: Find the Maclaurin series of the function 
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. Find the radius of convergence of this series.
Solution:  
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Example 2: Find the Maclaurin series of the function 
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. Find the radius of convergence of this series.

Solution: Since the Maclaurin series is a special case of a Taylor series centered at a = 0, its formula is given by
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Noting by the exponent law 
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, we obtain the following terms for this formula.
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Hence,
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(continued on next page)
To determine the interval of convergence for this series, we use the ratio test. If we set 
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For convergence to occur, 
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. We next test possible convergence at the endpoint so this interval, x = -1 and x = 1. Using the series formula for our answer 
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This series is an alternating series, but an easy way to test its convergence is to note it is a geometric series with 
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, the series is divergent. For the other endpoint, we have
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For the sequence formula 
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, the sequence convergence tests says the series diverges. Hence, the series diverges at both endpoints x = -1 and x = 1.
Thus, the interval of convergence is 
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Note: Once we know the Maclaurin (Power) series representations centered at x = 0 for a given function, we can find the Maclaurin (Power) series of other functions by substitution, differentiation, or integration.
Some Common Maclaurin Series
Series







Interval of Convergence
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Example 3: Use a known Maclaurin series to find the Maclaurin series of the given function 
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Solution:
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Example 4: Use a known Maclaurin series to find the Maclaurin series of the given function 
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Solution: 
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Note: To differentiate or integrate a Maclaurin or Taylor series, we differentiate or integrate term by term.
Example 5: Find the Maclaurin series of 
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Example 6: Use a series to estimate 
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Solution: From the previous exercise, we saw that 
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Use the alternating series estimate theorem we saw in Section 8.4, we would like the value of the sequence term n where 
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. The following Maple commands illustrate that this occurs when n = 2.
> b := n -> 1/(factorial(2*n+1)*(8*n+5));
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> evalf(b(0));
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> evalf(b(1));
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> evalf(b(2));
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Since the error is computed using the term 
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Example 7: Find the Taylor series of 
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Example 8: Find the Taylor series of 
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