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Section 8.6/8.7: Taylor and Maclaurin Series 
 

Practice HW from Stewart Textbook (not to hand in) 
p. 604 # 3-15 odd, 21-27 odd 
p. 615 # 5-25 odd, 31-37 odd 

 
Taylor Series 
 
In this section, we discuss how to use a power series to represent a function. 
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which is called a Taylor series at x = a. 
 
If a = 0, then 
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is the Maclaurin series of f centered at x = 0. 
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Example 1: Find the Maclaurin series of the function xexf =)( . Find the radius of 
convergence of this series. 
 
Solution:   
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Example 2: Find the Maclaurin series of the function 
x

xf
−

=
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1)( . Find the radius of 

convergence of this series. 
 
Solution: Since the Maclaurin series is a special case of a Taylor series centered at a = 0, 
its formula is given by 
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To determine the interval of convergence for this series, we use the ratio test. If we set 
n

n xa = , then we have 1
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+
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n xa . Hence, by the ratio test we have 
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For convergence to occur, 1|| <x . Hence, by definition of absolute value , the initial 
interval of convergence is 11 <<− x . We next test possible convergence at the endpoint 

so this interval, x = -1 and x = 1. Using the series formula for our answer ∑
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This series is an alternating series, but an easy way to test its convergence is to note it is a 
geometric series with 1−=r . Since 11 |1| || ≥=−=r , the series is divergent. For the 
other endpoint, we have 
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For the sequence formula nan = , since 0lim >∞=
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says the series diverges. Hence, the series diverges at both endpoints x = -1 and x = 1. 
Thus, the interval of convergence is  
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Note: Once we know the Maclaurin (Power) series representations centered at x = 0 for a 
given function, we can find the Maclaurin (Power) series of other functions by 
substitution, differentiation, or integration. 
 

Some Common Maclaurin Series 
 

Series        Interval of Convergence 
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Example 3: Use a known Maclaurin series to find the Maclaurin series of the given 
function 4sin)( xxf = . 
 
Solution: 
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Example 4: Use a known Maclaurin series to find the Maclaurin series of the given 
function xxexf 2)( = . 
 
Solution:  
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Note: To differentiate or integrate a Maclaurin or Taylor series, we differentiate or 
integrate term by term. 
 
Example 5: Find the Maclaurin series of ∫ dxx4sin . 
 
Solution:  
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Example 6: Use a series to estimate ∫
1

0

4sin dxx  to 3 decimal places. 

 
Solution: From the previous exercise, we saw that  

∑∫
∞

=

+
+

++
−

=
0

58
4

)58( ! )12(
)1(sin

n

nn
C

nn
xdxx . 

Then 
 

…+
⋅

−
⋅

+
⋅

−=

++
−

=

−
++

−
=

++
−

=

∑

∑

∑∫

∞

=

∞

=

+

=

=

∞

=

+

29!7
1

21 ! 5
1

13 ! 3
1

5
1                

)58( ! )12(
)1(                 

0         
)58( ! )12(

)1()1(                  

)58( ! )12(
)1(sin

0

0

58

1

00

581

0

4

n

n
n

nn

x

xn

nn

nn

nn

nn
xdxx

 

 
Use the alternating series estimate theorem we saw in Section 8.4, we would like the value 

of the sequence term n where 0009.0
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commands illustrate that this occurs when n = 2. 
 
> b := n -> 1/(factorial(2*n+1)*(8*n+5)); 

 := b  → n 1
!( ) + 2 n 1 ( ) + 8 n 5  

> evalf(b(0)); 
0.2000000000  

> evalf(b(1)); 
0.01282051282  

> evalf(b(2)); 
0.0003968253968  

Since the error is computed using the term 2b  in the series, the estimate can be computed 
by summing the terms in the series, 0b  and 1b , that precede it. Thus 
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Example 7: Find the Taylor series of xxf sin)( =  at 
4
π

=a . 

 
Solution:  
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Example 8: Find the Taylor series of xxf ln)( =  at 2=a . 
 
Solution:  
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