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Section 8.9: Applications of Taylor Polynomials
Practice HW from Stewart Textbook (not to hand in)

p. 628 # 1-21 odd
Taylor Polynomials
In this section, we use Taylor polynomials to approximate a given function 
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where 
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Example 1: Find the Taylor (Maclaurin) polynomial for
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 at a = 0 and n = 2 and use it to approximate 
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Solution:  
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Note: In general, the higher the degree of the Taylor polynomial and the closer we are to the point x = a that the Taylor polynomial is centered at, the better the approximation
Example 2: Find the Taylor (Maclaurin) polynomial for
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 at a = 0 and n = 4 and use it to approximate 
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Solution:
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The following table illustrates the accuracy of the Taylor polynomials 
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and 
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 near x = 0.

	x
	-8
	-1
	-0.1
	-0.01
	0
	0.01
	0.1
	1
	5
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	0.0003
	0.367879
	.904837


	0.9900498
	1
	1.01005016
	1.1051709
	2.71882818
	148.413
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	25
	0.5
	0.905
	0.99005
	1
	1.01005
	1.105
	2.5
	18.5
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	110.3
	0.375
	0.904837
	0.9900498
	1
	1.01005016
	1.1051708
	2.7083333
	65.375


As can be seen, the closer the value of x is nearer to zero, the better the approximation the
Taylor polynomials provided for the function. This is further illustrated by the following graphs:
[image: image17.png]Graph {x) = e*x (black), 12 (red), T4 (bue)
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Note: The following Maple commands can be used to find the 2nd and 4th degree Taylor polynomials for 
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> with(Student[Calculus1]):
> TaylorApproximation(exp(x), x = 0, order = 2);
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> TaylorApproximation(exp(x), x = 0, order = 4);
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Example 3: Find the Taylor polynomial 
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 at a = 1 for n = 3.
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Error of Approximation
Can be used to determine how close a Taylor polynomial 
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We define the function 
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Estimation of Error – Taylor’s Inequality
If 
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Note: It is many times useful to use Maple to help determine the error of approximation.
Example 4: For 
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, use Maple to 
a. Approximate f  by a Taylor polynomial of degree n = 3 centered at a = 1.

b. Use Taylor’s inequality to estimate the accuracy of the approximation 
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Solution (Part a): The following commands will compute and store the 3rd degree Taylor polynomial centered at x = a = 1.
> with(Student[Calculus1]):
> T3 := TaylorApproximation(ln(1+2*x), x = 1, order = 3);
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Solution (Part b): It is important to note that the inequality 
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, which is the given interval. The Taylor inequality estimate says that if
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For this problem, n = 3, a = 1, and d = 0.5. Thus, the equality becomes 
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This inequality is guaranteed to be true if 
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> f := ln(1+2*x);
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> f4 := abs(diff(f, x$4));
[image: image55.wmf] := 

f4

96

 + 

1

2

x

4


> plot(f4, x = 0.5..1.5, view = [-1..2, -1..10]);
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As, the graph shows, the fourth order derivative 
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Thus, this says for any value of x in the interval 
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and the Taylor polynomial 
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