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Section 9.2: Vectors                         

Practice HW from Stewart Textbook (not to hand in)

p. 649 # 7-20
Vectors in 2D and 3D Space
Scalars are real numbers used to denote the amount (magnitude) of a quantity. Examples include temperature, time, and area.

Vectors are used to indicate both magnitude and direction. The force put on an object or the velocity a pitcher throws a baseball are examples.

Notation for Vectors

Suppose we draw a directed line segment between the points P (called the initial point) and the point Q (called the terminal point).
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We denote the vector between the points P and Q as 
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. We denote the length or magnitude of this vector as 

Length of v = 
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We would like a way of measuring the magnitude and direction of a vector. To do this, we will example vectors both in the 2D and 3D coordinate planes.

Vectors in 2D Space
Consider the x-y coordinate plane. In 2D, suppose we are given a vector v with initial point at the origin (0, 0) and terminal point given by the ordered pair 
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The vector v with initial point at the origin (0, 0) is said to be in standard position.  The component for of v is given by v = 
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Example 1: Write in component form and sketch the vector in standard position with terminal point (1, 2).

Solution:
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Vectors in 3D Space

Vectors is 3D space are represented by ordered triples v = 
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. A vector v is standard position has its initial point at the origin (0,0,0) with terminal point given by the ordered triple 
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Example 2: Write in component form and sketch the vector in standard position with terminal point (-3, 4, 2).

Solution:
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Some Facts about Vectors
1.
The zero vector is given by 0 = < 0, 0 > in 2D and 0 = < 0, 0, 0 > in 3D.

2.
Given the points 
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The component for the vector a is given by
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Given the points 
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The component for the vector a is given by 
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3.
The length (magnitude) of the 2D vector a = 
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The length (magnitude) of the 3D vector a = 
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4.
If 
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 = 1, then the vector a is called a unit vector.

5.
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Example 3: Given the points A(3, -5) and B(4,7). 

a.
Find a vector a with representation given by the directed line segment 
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b.
 Find the length | a | of the vector a. 

c.
Draw 
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 and the equivalent representation starting at the origin.

Solution: 
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Example 4: Given the points A(2, -1, -2)and B(-4, 3, 7).. 

a.
Find a vector a with representation given by the directed line segment 
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b.
 Find the length | a | of the vector a. 

c.
Draw 
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 and the equivalent representation starting at the origin.

Solution: 
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Facts and Operations With Vectors 2D
Given the vectors a = 
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1. 
a + b = 
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a - b = 
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2.
k a = 
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3.
Two vectors are equal if and only if their components are equal, that is, a = b if and 


only if 
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Facts and Operations With Vectors 3D
Given the vectors a = 
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1. 
a + b = 
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a - b =
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2.
k a = 
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3.
Two vectors are equal if and only if their components are equal, that is, a = b if and 


only if 
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Example 5: Given the vectors a = 
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c. 3 a – 2 b
b. 2 b



d. | 3 a – 2 b |
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Unit Vector in the Same Direction of the Vector a
Given a non-zero vector a, a unit vector u (vector of length one) in the same direction as the vector a can be constructed by multiplying a by the scalar quantity 
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Multiplying the vector | a | by 
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 to get the unit vector u is called normalization.







Example 6: Given the vector a = < -4, 5, 3>.

a.
Find a unit vector in the same direction as a and verify that the result is indeed a unit vector.

b. 
Find a vector that has the same direction as a but has length 10.

Solution: Part a) To compute the unit vector u in the same direction of a = < -4, 5, 3>, we first need to find the length of a which is given by 

| a | = 
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For u to be a unit vector, we must show that | u | = 1. Computing the length of | u | we obtain
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Part b) Since the unit vector u found in part a has length 1 is in the same direction of a, multiplying the unit vector u by 10 will give a vector, which we will call b, with a length of 10, in the same direction of a. Thus,
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The following graph shows the 3 vectors on the same graph, where you can indeed see they are all pointing in the same direction (the unit vector u is in red, the given vector a in blue, and the vector b in green. 
[image: image51.png]
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Standard Unit Vectors
In 2D, the unit vectors < 1, 0 > and < 0, 1 > are the standard unit vectors. We denote these vectors as i =  < 1, 0 > and j = < 0, 1 >. The following represents their graph in the x-y plane.

Any vector in component form can be written as a linear combination of the standard unit vectors i and j. That is, the vector a = 
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in standard unit vector form. For example, the vector < 2, -4 > in component form can be written as
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in standard unit vector form.

In 3D, the standard unit vectors are i =  < 1, 0, 0 > ,  j = < 0, 1, 0 >, and k =  < 0, 0, 1 >.









Any vector in component form can be written as a linear combination of the standard unit vectors i and j and k. That is, That is, the vector a = 
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in standard unit vector from. For example the vector the vector < 2, -4, 5 > in component form can be written as
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Example 7: Given the vectors 
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Solution:
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