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Section 9.3: The Dot Product                         

Practice HW from Stewart Textbook (not to hand in)

p. 655 # 3-8, 11, 13-15, 17, 23-26
Dot Product of Two Vectors
The dot product of two vectors gives a scalar that is computed in the following manner.
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In 3D, if a = 
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Properties of the Dot Product p, 654
Let a, b, and c be vectors, k be a scalar.
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Example 1: Given 
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Solution:
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Angle Between Two Vectors
Given two vectors a and b separated by an angle 
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Then
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Then we can write the dot product as
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Example 2: Find the angle 
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 between the given vectors a = < 3, 1 > and b = < 2, -1 >.

Solution:
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Parallel Vectors
Two vectors a and b are parallel of there is a scalar k where a = k b .








Orthogonal Vectors

Two vectors a and b are orthogonal (intersect at a 
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Note: If two vectors a and b are orthogonal, they intersect at the angle 
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Example 3: Determine whether the two vectors a and b are orthogonal, parallel, or neither.
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Solution:
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Projections
Suppose we are given the vectors a and b in the following diagram



The vector in red 
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 is called the vector projection of the vector b onto the

vector a. Since w is a smaller vector in length the vector a, it is “parallel” to a and hence is a scalar multiple of a. Thus, we can write w = k a, The scalar k is know as the scalar projection of vector b onto the vector a (also known as the component of b along a). We assign the scalar k the notation

k = 
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Our goal first is to find k. From the definition of a right triangle,
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Also, the definition of the dot product says that 
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Hence, we can say that 
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Solving for k gives
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To get the vector projection, we compute the vector w. To get a vector of length k that represents the length of w, we multiply k by the unit vector in the direction of a given by 
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Summarizing, we obtain the following results.


Scalar and Vector Projection

Scalar Projection of b onto a:
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Vector Projection of b onto a:
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Example 4: Find the scalar and vector projections of b onto a if 
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Solution: The scalar projection of of b onto a is given by the formula
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We see that 
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and that
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Thus the scalar projection is

Scalar projection of b onto a  = 
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Hence, the vector projection is 

Vector projection of b onto a  = 
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