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Section 9.4: The Cross Product                         

Practice HW from Stewart Textbook (not to hand in)

p. 664 # 1, 7-17
Cross Product of Two Vectors
The cross product of two vectors produces a vector (unlike the dot product which produces s scalar) that has important properties. Before defining the cross product, we first give a method for computing a 
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Definition: The determinant of a 
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Example 1: Compute 
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We next define the cross product of two vectors.

Definition: If a = 
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k  be vectors in 3D space. The cross product is the vector
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To calculate the cross product more easily without having to remember the formula, we using the following “determinant” form.
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We calculate the 
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determinant as follows: (note the alternation in sign)
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Example 2: Given the vectors 
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a. 
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Properties of the Cross Product
Let a, b, and c be vectors, k be a scalar.

1. 
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Geometric Properties of the Cross Product
Let a and b be vectors 

1. 
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 is orthogonal to both a and b.

Example 3: Given the vectors 
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Note: 
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 if and only a = k b, that is, if the vectors a and b are parallel.
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 gives the area having the vectors a and b as its adjacent sides.
Example 4: Given the points P(0, -2, 0),  Q(-1, 3, 4), and R(3,0,6).
a. Find a vector orthogonal to the plane through these points.

b. Find the area of the parallelogram with the vectors 
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 as its adjacent sides.

c. Find area of the triangle PQR.
Solution: Part a) The plane containing the given points will have the vectors 
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 as its adjacent sides. We first compute these vectors as follows:
The vector connecting P(0, -2, 0) and Q(-1, 3, 4) is
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The vector connecting P(0, -2, 0) and R(3,0,6) is
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The vector orthogonal to the plane will be the vectors orthogonal to 
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, which is precisely the cross product 
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. Thus, we have


[image: image50.wmf]k

j

i

k

j

i

k

j

i

k

j

i

PR

PQ

17

18

22

  

        

          

)

3

5

2

1

(

)

3

4

6

1

(

)

2

4

6

5

(

  

         

          

2

3

5

1

 

6

3

4

1

 

6

2

4

5

 

  

          

          

6

2

3

4

5

1

   

   

  

  

-

+

=

×

-

×

-

+

×

-

×

-

-

×

-

×

=

-

+

-

-

=

-

=

´

®

-

®

-


(Continued on next page)

The following displays a graph of the vectors 
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Part b) The area of the parallelogram with the vectors 
[image: image55.wmf]®

-

PQ

 and 
[image: image56.wmf]®

-

PR

 as its adjacent sides is precisely the length of the cross product of these two vectors that we calculated in part a. Using the fact that 
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, we have that
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Part c.) The area of the triangle PQR represents exactly one-half of the area of the parallelogram with the vectors 
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 as its adjacent sides that we found in part b.

Hence, we have
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