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Section 9.5: Equations of Lines and Planes                        

Practice HW from Stewart Textbook (not to hand in)

p. 673 # 3-15 odd, 21-37 odd, 41, 47
Lines in 3D Space
Consider the line L through the point 
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The line L consists of all points Q = (x, y, z) for which the vector 
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 is parallel to v.
Now,
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Since 
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 is parallel to v = < a, b, c > ,
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Rewriting this equation gives
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Solving for the vector 
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Setting r = 
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, and v = < a, b, c >, we get the following vector equation of a line.

Vector Equation of a Line in 3D Space

The vector equation of a line in 3D space is given by the equation
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 is a vector whose components are made of the point 
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 on the line L and v = < a, b, c > are components of a vector that is parallel to the line L.
If we take the vector equation
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and rewrite the right hand side of this equation as one vector, we obtain
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Equating components of this vector gives the parametric equations of a line.

Parametric Equations of a Line in 3D Space
The parametric equations of a line L in 3D space are given by
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 is a point passing through the line and v = < a, b, c > is a vector that the line is parallel to. The vector v = < a, b, c > is called the direction vector for the line L and its components a, b, and c are called the direction numbers.
Assuming 
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, if we take each parametric equation and solve for the variable t, we obtain the equations
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Equating each of these equations gives the symmetric equations of a line.


Symmetric Equations of a Line in 3D Space

The symmetric equations of a line L in 3D space are given by 
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where 
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 is a point passing through the line and v = < a, b, c > is a vector that the line is parallel to. The vector v = < a, b, c > is called the direction vector for the line L and its components a, b, and c are called the direction numbers.
Note!! To write the equation of a line in 3D space, we need a point on the line and a parallel vector to the line.

Example 1: Find the vector, parametric, and symmetric equations for the line through the point (1, 0, -3) and parallel to the vector 2 i  - 4 j  + 5 k.
Example 2: Find the parametric and symmetric equations of the line through the points (1, 2, 0) and (-5, 4, 2)
Solution: To find the equation of a line in 3D space, we must have at least one point on the line and a parallel vector. We already have two points one line so we have at least one. To find a parallel vector, we can simplify just use the vector that passes between the two given points, which will also be on this line. That is, if we assign the point

P = (1, 2, 0) and Q = (-5, 4, 2), then the parallel vector v is given by
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Recall that the parametric equations of a line are given by
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We can use either point P or Q as our point on the line 
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. We choose the point P and assign 
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. The terms a, b, and c are the components of our parallel vector given by v = < -6, 2, 2 > found above. Hence a = -6, b = 2, and c = 2. Thus, the parametric equation of our line is given by 
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To find the symmetric equations, we solve each parametric equation for t. This gives
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Setting these equations equal gives the symmetric equations.
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The graph on the following page illustrates the line we have found
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It is important to note that the equations of lines in 3D space are not unique. In Example 2, for instance, had we used the point Q = (-5, 4, 2) to represent the equation of the line with the parallel vector v = < -6, 2, 2 >, the parametric equations becomes 
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Example 3: Find the parametric and symmetric equations of the line passing through the point (-3, 5, 4) and parallel to the line x = 1 + 3t, y = -1 – 2t, z = 3 + t .
Solution:
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Planes in 3D Space
Consider the plane containing the point 
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perpendicular to the plane.









The plane consists of all points Q = (x, y, z) for which the vector 
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 is orthogonal to the normal vector n = < a, b, c >. Since 
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This gives the standard equation of a plane. If we expand this equation we obtain the following equation:
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Setting 
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 gives the general form of the equation of a plane in 3D space
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We summarize these results as follows.


Standard and General Equations of a Plane in the 3D space

The standard equation of a plane in 3D space has the form
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where 
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 is a point on the plane and n = < a, b, c > is a vector normal (orthogonal to the plane). If this equation is expanded, we obtain the general equation of a plane of the form
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Note!! To write the equation of a plane in 3D space, we need a point on the plane and a vector normal (orthogonal) to the plane.
Example 4: Find the equation of the plane through the point (-4, 3, 1) that is perpendicular to the vector a = -4 i + 7 j – 2 k.
Solution:
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Example 5: Find the equation of the plane passing through the points (1, 2, -3), (2, 3, 1), and (0, -2, -1).

Solution:
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Intersecting Planes
Suppose we are given two intersecting planes with angle 
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 between them.









Let 
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Thus, two planes are 
1. Perpendicular if 
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Notes
1. 
Given the general equation of a plane 
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n = < a, b, c >.

2.
The intersection of two planes is a line.

Example 6: Determine whether the planes 
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are orthogonal, parallel, or neither. Find the angle of intersection and the set of parametric equations for the line of intersection of the plane.

Solution:
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Example 7: Determine whether the planes 
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are orthogonal, parallel, or neither. Find the angle of intersection and the set of parametric equations for the line of intersection of the plane.

Solution: For the plane 
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. The two planes will be orthogonal only if their corresponding normal vectors are orthogonal, that is, if 
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Hence, the planes are not orthogonal. If the planes are parallel, then their corresponding normal vectors must be parallel. For that to occur, there must exist a scalar k where 
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Rearranging this equation as k
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Equating components gives the equations
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Since the values of k are not the same for each component to make the vector 
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 a scalar multiple of the vector 
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, the planes are not parallel. Thus, the planes must intersect in a straight line at a given angle. To find this angle, we use the equation
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For this formula, we have the following:
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(continued on next page)
Thus,
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Solving for 
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To find the equation of the line of intersection between the two planes, we need a point on the line and a parallel vector. To find a point on the line, we can consider the case where the line touches the x-y plane, that is, where z = 0. If we take the two equations of the plane 
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and substitute z = 0, we obtain the system of equations
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Taking the first equation and multiplying by -5 gives
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Adding the two equations gives 16y = -16 or 
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. Solving for x gives x = 4-3 = 1. Thus, the point on the plane is (1, -1, 0). To find a parallel vector for the line, we use the fact that since the line is on both planes, it must be orthogonal to both normal vectors 
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(continued on next page)

Hence, using the point (1, -1, 0) and the parallel vector 
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The following shows a graph of the two planes and the line we have found.
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Example 8: Find the point where the line x = 1 + t, y = 2t, and z = -3t intersects the plane 
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Solution:
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Distance Between Points and a Plane

Suppose we are given a point Q not in a plane and a point P on the plane and our goal is to find the shortest distance between the point Q and the plane.








By projecting the vector 
[image: image105.wmf]®

-

PQ

 onto the normal vector n (calculating the scalar projection 
[image: image106.wmf]®

-

PQ

comp

n

 ), we can find the distance D. 

[image: image107.wmf]|

|

|

|

|

|

  

D

plane

 

 the

and

Between 

 

Distance

n

n

PQ

PQ

comp

Q

n

×

=

=

=

®

-

®

-


Example 9: Find the distance between the point (1, 2, 3) and line 
[image: image108.wmf]4

2

=

+

-

z

y

x

.

Solution: Since we are given the point Q = (1, 2, 3), we need to find a point on the plane 
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Thus P = (2, 0, 0) and the vector 
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Hence, using the fact that the normal vector for the plane is 
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Thus, the distance is 
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