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Section 11.5: Directional Derivatives and Gradients
Practice HW from LarsonTextbook (not to hand in)
p. 701 # 1-7 odd, 11, 13, 21-25 odd,                              
The Directional Derivative
Recall that
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Instead of restricting ourselves to the x and y axis, suppose we want to find a method for finding the slope of the surface in any desired direction.
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Let u = < a, b >  be the unit vector (a vector of length one) on the x-y plane which indicates the direction we are moving. Then we define the following:

Definition of the Directional Derivative

The directional derivative of a function z = f (x, y) in the direction of the unit vector 

u = < a, b >, denoted by 
[image: image3.wmf])
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, is defined the be the following:
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Notes
1. 
Geometrically, the directional derivative is used to calculate the slope of the surface 


z = f (x, y). That is, to calculate the slope of the surface at the point 
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where 
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, we compute the following:
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2.
The vector u = < a, b >  must be a unit vector. If we want to compute the directional 

derivative of a function in the direction of the vector v and v is not a unit vector, we 


compute
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3.
The direction of the unit vector u can be expressed in terms of the angle 
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 between 


the vector u and the x-axis. In this case, 
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as
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4.
Computationally, the directional derivative represents the rate of change of the 


function  f  in the direction of the unit vector u.
Example 1: Find the directional derivative of the function 
[image: image13.wmf]x

xy

y

y

x

f

6

4

3

)

,

(

+

-

=

 at the point (1, 2) in the direction of the unit vector that makes an angle of 
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Solution:
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Example 2: Find the directional derivative of the function 
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 at the point (-3, -4) in the direction of the vector 
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Example 3: Find the directional derivative of the function 
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at the point 

P = (1, 1) in the direction of the point Q = (0, 0).
Solution: We first need to find a unit vector u that travels in the same direction is the vector with an initial point P and terminal point Q. First, we see that
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Then, since 
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Hence, 
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Hence,
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Gradient of a Function 
Given a function of two variables z = f (x, y), the gradient vector, denoted by 
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Facts about Gradients
1. 
The directional derivative of the function z = f (x, y) in the direction of the unit vector 


u = < a, b > can be expressed in terms of gradient using the dot product. That is,
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2.
The gradient vector 
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 gives the direction of maximum increase of the surface 

z = f (x, y). The length of the gradient vector is the maximum value of the directional 


derivative (the maximum rate of change of f). That is,
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3.
The negation of the gradient vector 
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 gives the direction of maximum decrease.

of the surface z = f (x, y). The negation of the length of the gradient vector is the minimum value of the directional derivative. That is,


[image: image34.wmf]||

)

,

(

||

)

,

(

y

x

f

y

x

f

D

Ñ

-

=

 

 

Derivative

 

l

Directiona

 

the

 

of

 

 Value

Minimum

u


Example 4: Given the function 
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a. 
Find the gradient of f
b.
Evaluate the gradient at the point P
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c.
Use the gradient to find a formula for the directional derivative of f  in the direction of the vector 
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Directional Derivative and Gradient for Functions of 3 variables

The directional derivative of a function  f (x, y, z) of 3 variables in the direction of the unit vector u = < a, b, c >, denoted by 
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, is defined to be the following:
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The gradient vector, denoted by 
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, is a vector denoted by
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Example 4: Find the gradient and directional derivative of 
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at P(1, 2, 4) in the direction of the point Q(-3, 1, 2).
Solution: We first compute the first order partial derivatives with respect to x, y, and z. They are as follows.
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Then the formula for the gradient is computed as follows:
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Hence, at the point P(1, 2, 4), the gradient is 
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To find the directional derivative, we must first find the unit vector u specifying the direction at the point P(1, 2, 4)  in the direction of the point Q(-3, 1, 2). To do this, we find the vector 
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This must be a unit vector, so we compute the following:
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Then, using the dot product formula involving the gradient for the directional derivative and the results for the gradient at the point P(1,2,4) and u given above, we obtain
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