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Section 13.3: The Fundamental Theorem of Line Integrals 
Practice HW from Larson Textbook (not to hand in)
p. 820 # 7, 8, 13, 19, 20, 29 
The Fundamental Theorem of Line Integrals
Consider the consider the vector field 
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The paths can be seen in the following diagram:
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For the path 
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, we saw from Example 5 in the Section 11.2 notes that 
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For the path 
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, we have 
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Since 
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Note that for the paths 
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 and 
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, the initial point and ending points are the same. That is each graph starts at the point (2, 0) (t = 0 for both 
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) and both end at the point (0, 2) (
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). The line integrals for both of these paths are
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For conservative vector fields, this common values for the line integrals is not a coincidence.

Fact: The value of 
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 is independent of path if and only if the vector field F is conservative.
If we know the function f  where 
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, there is a much easier way to evaluate to line integral of a conservative vector field F, which we state next.
Fundamental Theorem of Line Integrals
Given a path 
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. Then if F is a conservative vector field with function f  where 
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The function has a natural extension of functions of 3 variables.
Example 4: Use to fundamental theorem of line integrals to evaluate 
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 over the path C from the point (2, 0) to (0, 2). 
Solution:
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Example 5: Evaluate 
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Solution:
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Note: If a curve C given by r(t) is closed, that is, r(a) = r(b) for 
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where the path has the same initial and terminal points, then 
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 if F is conservative. 
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