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Section 11.2: Limits and Continuity                        

Practice HW from Stewart Textbook (not to hand in)

p. 755 # 5-15 odd, 25-31 odd
Limits of Functions of Two Variables
A limit of a function of two variables z = f (x, y) as (x, y) approaches a specific ordered pair.

Notation: We write
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For a limit to exist, the function of 2 variables z = f (x, y) must approach the same z value as (x, y) approaches (a, b) along all paths on the x-y coordinate plane. If a function of two variables is defined at a point, we can immediately substitute to find the limit.

Example 1: Evaluate 
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, if it exists, or show that the limit does not exist.

Solution:
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Notes: 

1. 
To show that a limit does note exist we must produce two paths on the x-y coordinate 


plane that does not give the same limit value.

2.
To show a limit does exist, sometimes the Squeeze Theorem. For functions of one 

variable, this says that if 
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 when x approaches a (not necessarily when x equals a and 
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then
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. This idea can be applied to functions of two variables.
Example 2: Evaluate 
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, if it exists, or show that the limit does not exist.

Solution:
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Example 3: Evaluate 
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, if it exists, or show that the limit does not exist.

Solution:
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Example 4: Evaluate 
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, if it exists, or show that the limit does not exist.

Solution:
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Continuity

A function of two variables f (x, y) is continuous at (a, b) if 
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Note: To find where a function of 2 variables is continuous, often it suffices to find where the function is defined.

Example 5: Determine the set of points where the function 
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Solution: 
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Example 6: Determine the set of points where the function 
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is continuous.

Solution: On this problem, the only point in question where the function may not be continuous at is the point (0, 0). We see first that f   is defined at this point since 
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. From example 4, we see that 
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However, since
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by the definition, the function is not continuous at the point (0, 0). This, the function is continuous for the following set:


f  is continuous for the set 
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