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Section 11.2: Limits and Continuity                         
 

Practice HW from Stewart Textbook (not to hand in) 
p. 755 # 5-15 odd, 25-31 odd 

 
Limits of Functions of Two Variables 
 
A limit of a function of two variables z = f (x, y) as (x, y) approaches a specific ordered 
pair. 
 
Notation: We write 
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For a limit to exist, the function of 2 variables z = f (x, y) must approach the same z value 
as (x, y) approaches (a, b) along all paths on the x-y coordinate plane. If a function of two 
variables is defined at a point, we can immediately substitute to find the limit. 
 
Example 1: Evaluate 135lim 2
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yx
, if it exists, or show that the limit does 

not exist. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
            █ 
 
 
Notes:  
1.  To show that a limit does note exist we must produce two paths on the x-y coordinate  
 plane that does not give the same limit value. 
2. To show a limit does exist, sometimes the Squeeze Theorem. For functions of one  

variable, this says that if )()()( xhxgxf ≤≤  when x approaches a (not necessarily 
when x equals a and  
    Lxhxf

axax
==
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then Lxg
ax

=
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)(lim . This idea can be applied to functions of two variables. 



 2

Example 2: Evaluate 22
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  , if it exists, or show that the limit does not exist. 

 
Solution: 
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Example 3: Evaluate 44
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  , if it exists, or show that the limit does not exist. 

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 



 4

Example 4: Evaluate 22
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  , if it exists, or show that the limit does not exist. 

 
Solution: 
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Continuity 
 
A function of two variables f (x, y) is continuous at (a, b) if  
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Note: To find where a function of 2 variables is continuous, often it suffices to find where 
the function is defined. 
 

Example 5: Determine the set of points where the function 
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Solution:  
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Example 6: Determine the set of points where the function  
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is continuous. 
 
Solution: On this problem, the only point in question where the function may not be 
continuous at is the point (0, 0). We see first that f   is defined at this point since 

2)0,0( =f . From example 4, we see that 0
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However, since 
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by the definition, the function is not continuous at the point (0, 0). This, the function is 
continuous for the following set: 
 

f  is continuous for the set { }   )0,0(),(|),( ≠yxyx  
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