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Section 11.6: Directional Derivatives and the Gradient Vector                        

Practice HW from Stewart Textbook (not to hand in)
p. 778 # 1-4                               
p. 799 # 4-15, 17, 19, 21, 29, 35, 37 odd
The Directional Derivative
Recall that
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Instead of restricting ourselves to the x and y axis, suppose we want to find a method for finding the slope of the surface in any desired direction.
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Let u = < a, b >  be the unit vector (a vector of length one) on the x-y plane which indicates the direction we are moving. Then we define the following:

Definition of the Directional Derivative

The directional derivative of a function z = f (x, y) in the direction of the unit vector 

u = < a, b >, denoted by 
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Notes
1. 
Geometrically, the directional derivative is used to calculate the slope of the surface 


z = f (x, y). That is, to calculate the slope of the surface at the point 
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, we compute the following:
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2.
The vector u = < a, b >  must be a unit vector. If we want to compute the directional 

derivative of a function in the direction of the vector v and v is not a unit vector, we 


compute
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3.
The direction of the unit vector u can be expressed in terms of the angle 
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the vector u and the x-axis. In this case, 
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4.
Computationally, the directional derivative represents the rate of change of the 


function  f  in the direction of the unit vector u.
Example 1: Find the directional derivative of the function 
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 at the point (1, 2) in the direction of the unit vector that makes an angle of 
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Solution:
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Example 2: Find the directional derivative of the function 
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 at the point (-3, -4) in the direction of the vector 
[image: image16.wmf]j

i

v

3

2

+

-

=

.
Solution:
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Gradient of a Function 
Given a function of two variables z = f (x, y), the gradient vector, denoted by 
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Facts about Gradients
1. 
The directional derivative of the function z = f (x, y) in the direction of the unit vector 


u = < a, b > can be expressed in terms of gradient using the dot product. That is,
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2.
The gradient vector 
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 gives the direction of maximum increase of the surface 

z = f (x, y). The length of the gradient vector is the maximum value of the directional 


derivative (the maximum rate of change of f). That is,


[image: image21.wmf]|

)

,

(

|

)

,

(

y

x

f

y

x

f

D

Derivative

l

Directiona

the

of

Value

Maximum

Ñ

=

 

 

 

 

 

 

 

u


3.
The negation of the gradient vector 
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 gives the direction of maximum decrease.

of the surface z = f (x, y). The negation of the length of the gradient vector is the minimum value of the directional derivative. That is,
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Example 3: Given the function 
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a. 
Find the gradient of f
b.
Evaluate the gradient at the point P
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c.
Use the gradient to find a formula for the directional derivative of f  in the direction of the vector 
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Solution:
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Directional Derivative and Gradient for Functions of 3 variables

The directional derivative of a function  f (x, y, z) of 3 variables in the direction of the unit vector u = < a, b, c >, denoted by 
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The gradient vector, denoted by 
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, is a vector denoted by
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Example 4: Find the gradient and directional derivative of 
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at P(1, 2, 4) in the direction of the point Q(-3, 1, 2).
Solution: We first compute the first order partial derivatives with respect to x, y, and z. They are as follows.
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Then the formula for the gradient is computed as follows:
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Hence, at the point P(1, 2, 4), the gradient is 
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To find the directional derivative, we must first find the unit vector u specifying the direction at the point P(1, 2, 4)  in the direction of the point Q(-3, 1, 2). To do this, we find the vector 
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=

PQ

v

. This is found to be
[image: image38.wmf]>

-

-

-

>=<

-

-

-

-

=<

=

®

2

,

1

,

4

4

2

,

2

1

,

1

3

PQ

v

.

This must be a unit vector, so we compute the following:
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Then, using the dot product formula involving the gradient for the directional derivative and the results for the gradient at the point P(1,2,4) and u given above, we obtain
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Example 5: Find the maximum rate of change of 
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Solution:












█
Normal Lines to Surfaces
Recall that z = f (x, y) gives a 3D surface in space. We want to form the following functions of 3 variables
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Note that the function 
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 is obtained by moving all terms to one side of an equation and setting them equal to zero. We use the following basic fact.

Fact: Given a point 
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is a vector orthogonal (normal) to the surface 
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Example 6: Find a unit normal vector to the surface 
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Solution:
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Tangent Planes
Using the gradient, we can find a equation of a plane tangent to a surface and a line normal to a surface. Consider the following:






Recall that to write equation of a plane, we need a point on the plane and a normal vector. Since 
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 represents a normal vector to the surface (and the tangent plane), its components can be used to write the equation of the tangent plane at the point 
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Recall, to write the equation of a line in 3D space, we need a point and a parallel vector. Since 
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 is a vector normal to the surface, it would be parallel to any line normal to the surface at 
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We summarize these results as follows.


Tangent Plane and Normal Line Equations to a Surface

Given a surface z = f (x, y) in 3D, form the function 
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of three variables. Then the equation of the tangent plane to the surface z = f (x, y) at the point 
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The parametric equations of the normal line through the point 
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Note: Recall that to find the symmetric equations of a line, take the parametric equations, solve for t, and set the results equal.
Example 7: Find the equation of the tangent plane and the parametric and symmetric equations for the normal line to the surface 
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Solution:
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Note: The following graph using Maple shows the graph of the sphere 
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 with the tangent plane and normal line at the point (2, 1, 2).
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Example 8: Find the equation of the tangent plane and the parametric and symmetric equations for the normal line to the surface 
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Solution: We start by setting 
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Recall that to get an equation of any plane, including a tangent plane, we need a point and a normal vector. We are given the point 
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Computing the necessary partial derivatives, we obtain
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The given point is 
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the gradient vector of F at the point 
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We use the components of the gradient vector to write the equation of the tangent plane using the formula
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At the point 
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Using the calculations for the partial derivatives given on the previous page, this equation becomes
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We can expand this equation to get it in general form. Doing this gives
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and when combining like terms, we have the equation of the tangent plane
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The parametric equations of the normal line through the point 
[image: image89.wmf])

,

,

(

0

0

0

z

y

x

 are given by


[image: image90.wmf]t

z

y

x

F

x

x

x

)

,

,

(

0

0

0

0

+

=

, 
[image: image91.wmf]t

z

y

x

F

y

y

y

)

,

,

(

0

0

0

0

+

=

, 
[image: image92.wmf]t

z

y

x

F

z

z

z

)

,

,

(

0

0

0

0

+

=


Using the calculations we computed above where that 
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which, when simplified, gives
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If we want to convert this these equations to symmetric form, we can take the last two equations of the previous result and solve for t. This gives 
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Equation gives the symmetric equations of the normal line.
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The following displays the graph of the function 
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