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     Section 12.2/12.3: Iterated Integrals 
Double Integrals over General Regions                         

 
Practice HW from Stewart Textbook (not to hand in) 

p. 842 # 1-25 odd                                
p. 850 # 1-21, 33-43 odd 

 
Integration of functions with more than one variable is similar to partial differentiation. 
We integrate with respect to one variable and treat the other as a constant. 
 

Example 1: Evaluate ∫
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x
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x
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Solution: 
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Example 2: Evaluate ∫
y

ey

dx
x

xy ln2
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Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 



 3

Iterated Integrals 
 
In this section, we want to look at iterated integrals, which are double integrals of the 
form. 
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Notes 
1. The inside variable of integration can be a function of the outside. 
2. The outside integral must have constant limits of integration. 
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Example 3: Evaluate the iterated integral dxdyyx    ∫ ∫ +
2
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Solution: 
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Example 4: Evaluate the iterated integral dydxxy 
yy

yy
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Note: Reversing the order of the integration variables will in most cases give the same 
results. 
 
Example 5: Reverse the order of integration and evaluated the result for the iterated 

integral dxdyyx    ∫ ∫ +
2

1

1

0

2 )( . 

 

Solution: If you reverse the order and the limits of integration for dxdyyx    ∫ ∫ +
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we obtain the integral dydxyx    ∫ ∫ +
1
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2 )( . Then we have the following. 
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Double Integrals over Regions 
 
For integrals of one variable, the region we integrate is always an interval. For double 
integrals, we want to integrate over a region R in the x-y plane. We denote this double 
integral using the notation 
 

∫∫
R

dAyxf  ),(  

 
If { })()(|),( 21 xgyxgandbxayxR ≤≤≤≤=    then we write 
 

∫ ∫∫∫
=
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{ })()(|),( 21 yhxyhanddycyxR ≤≤≤≤=    then we write 

 

∫ ∫∫∫
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The variable of integration to apply first is usually chosen to be the one that makes the 
initial integration the easiest. 
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Example 6: Evaluate the double integral ∫∫ +
R

dAyxx  )2cos( 2  where ]
2

,0[],0[ ππ ×=R . 

 
Solution:  
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Example 7: Evaluate the double integral ∫∫ +R

dA
x

y
21

 where { }xyandxyxR ≤≤≤≤= 040|),(    

 
Solution:  
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Example 8: Evaluate the double integral ∫∫ −

R

x dAe
2

 where 
⎭
⎬
⎫

⎩
⎨
⎧ ≤≤≤≤= 2

2
40|),( yxandxyxR    

 
Solution: The following graph shows the region R outlined in blue. 
 

  
 
 
If we integrate with respect to y first and then with respect to x, the double integral would 
be evaluated as  
 

dxdyedAe yx

x

y
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There is no formula or method that allows one to integrate 
2ye−  with respect to y. 

However, if we switch the order of integration and integrate with respect to x first, we can 
evaluate the integral. Since limits involving variables can only occur for the inside 
integral, we must use the region R to change the limits of integration. With respect to x, 
the region R changes from x = 0 to yx 2= . With respect to y, the region changes from    
y = 0 to y = 2. Thus, the double integral can be evaluated by computing the following 
iterated integral: 
 

dydxedAe yy
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        (continued on next page) 
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We compute this double integral as follows. 
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Finding Volume Under a Surface 
 
We want a method for finding the volume between a surface z = f (x, y) and the x-y plane. 
defined by the region R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If 0),( ≥yxf , the volume can be found using a double integral, which is described as 
follows. 
 
 

Volume under a Surface 
 
For a function of the two variables 0),( ≥= yxfz  defined over a region R, the volume 
above R and under  z = f (x, y)  is defined by the double integral 
 

∫∫=
R

dAyxf  ),(  Runder  Volume  
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Surface of VolumeWant ←  
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Example 9: Find the volume under the surface 22 yxz +=  and above the region 

bounded by 2yx =  and 3yx = . 
 
Solution: 
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