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Section 12.4: Double Integrals in Polar Coordinates
Practice HW from Stewart Textbook (not to hand in)
p. A66 Appendix H: # 1-6                             
p. 856  Section 12.4: # 1-21 odd, 25, 27 odd
Polar Coordinates
Up to now , we have represented graphs as a collection of points (x, y) in the rectangular coordinate. For example, the following represents the graph of the circle 
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Equations like this can be expressed in polar coordinates.

In polar coordinates, each coordinate is of the form 
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In polar coordinates, for the circle 
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, the points on the circle have a different representation.

[image: image5.png]



Note: Polar Coordinates are not unique – there may be more than one way to represent the same point. 

In general, 
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, where n is an integer, give the same point.
For example, 
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 represent the same point. Also, 
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Note: r can also be negative. The points 
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 lie on the line same line through the pole O and the same distance | r | from O, but on opposites sides of O. The points 
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Example 1: Plot the points with polar coordinates 
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Solution:
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Example 2: Plot the point with polar coordinates 
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. Then find two other pairs of polar coordinates of this point, one with r > 0 and the other r < 0.
Solution:
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Conversion of Rectangular and Polar Coordinates
Consider the following diagram:





We say 
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Using these equations and the Pythagorean Theorem, we have the following conversion equations.


Conversion Formulas

To convert from polar form 
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 to rectangular form (x, y) and vise versa, we use the following conversion equations.
From polar to rectangular form: 
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From rectangular to polar form: 
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Example 3: Find the corresponding rectangular coordinates for the point 
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Solution:
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Example 4: Find the polar coordinates for the point (0, -5).

Solution:
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Converting Equations
Example 5: Convert the equation 
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Example 5: Convert the equation 
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Graphing Polar Equations
One way to graph polar equations is to convert it to rectangular form and sketch the rectangular equation.

Example 6: Convert r = 3 to rectangular form and sketch the graph.
Solution: 
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Example 7: Convert 
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Solution: 
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Note: In general, sketching graphs is polar form is not an easy task. Maple can be a useful tool in graphing. The following shows the Maple commands necessary to graph the polar graphs 
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> with(plots):
> r := 5 - 4*sin(theta);
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> polarplot(r, theta = 0..2*Pi, thickness = 2, title = "Graph of r = 5 - sin(theta)");
[image: image36.png]Graph ol 1 =35 - smitheta)





> r := 2*cos(3*theta);
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> polarplot(r, theta = 0..2*Pi, thickness = 2, title = "Graph of r = 2cos(3*theta)");
[image: image38.png]



Evaluating Double Integrals Using Polar Coordinates
Changing a double integral from rectangular to polar coordinates can sometimes result in an integral that is easier to evaluate.

Suppose we have a region R on the x-y plane satisfying the polar conditions
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Then if the function of two variables z = f (x, y) is defined over R, we say that
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Example 8: Use polar coordinates to evaluate 
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 where R is the region that lies I in the first quadrant between the circles 
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Solution: 
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Example 9: Find the volume under the surface 
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Solution:
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Example 10: Evaluate the iterated integral 
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Solution:
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Pole (usually origin)
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Polar Axis (usually x-axis)
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� EMBED Equation.3  ��� = angle of rotation
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