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Section 12.7: Triple Integrals
Practice HW from Stewart Textbook (not to hand in)
p. 879 # 1-19 odd
Consider a continuous function of 3 variables f (x, y, z) on the solid bounded region E on the 3D plane.
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We evaluate a triple integral by writing it as an integrated integral.
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where the limits of integration are defined on the boundaries of E.

Example 1: Evaluate the iterated integral 
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Solution:
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Example 2: Evaluate 
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 where E lies under the plane 
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 and above the region in the x-y plane bounded by the curves in the first octant y = 0 and y = 
[image: image7.wmf]2

16

x

-

.
Solution:
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Example 3: Use a triple integral to find the volume of the solid bounded by the graphs of 
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 and the plane 
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Solution: The following graph shows a plot of the paraboloid 
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 (in blue), the plane 
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 (in red),  and its projection onto the x-y plane (in green).
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The triple integral 
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 will evaluate the volume of this surface. In the z direction, the surface E is bounded between the graphs of the paraboloid 
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. This will make up the limits of integration in terms of z. The limits for y and x are determined by looking at the projection D given on the x-y plane, which is the graph of the circle 
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 given as follows:
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(continued on next page)
Taking the equation 
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 and solving for y gives 
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. Thus the limits of integration of y will range from 
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. The integration limits in terms of x hence range from x = -2 to x = 2. Thus the volume of the region E can be found by evaluating the following triple integral:
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 . If we evaluate the intermost integral we get the following:
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Since the limits involving y involve two radicals, integrating the rest of this result in rectangular coordinates is a tedious task. However, since the region D on the x-y plane given by 
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 is circular, it is natural to represent this region in polar coordinates. 
Using the fact that the radius r ranges from 
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 ranges from 
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 and also that in polar coordinates, the conversion equation is 
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, the iterated integral becomes 
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Evaluating this integral in polar coordinates, we obtain
(continued on next page)
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Thus, the volume of E is 
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