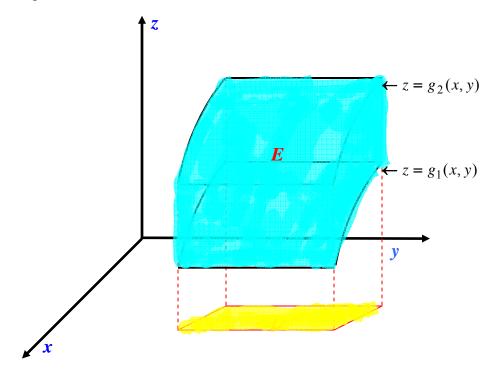
Section 12.7: Triple Integrals

Practice HW from Stewart Textbook (not to hand in) p. 879 # 1-19 odd

Consider a continuous function of 3 variables f(x, y, z) on the solid bounded region E on the 3D plane.



Then

The Triple Integral of
$$f$$
 of f = $\iiint_E f(x, y, z) dV$

Volume of the Region Q =
$$\iiint_E dV$$

We evaluate a triple integral by writing it as an integrated integral.

$$\iiint\limits_E f(x, y, z) \, dV = \int\limits_{x=a}^{x=b} \int\limits_{y=h_1(x)}^{y=h_2(x)} \int\limits_{z=g_1(x, y)}^{z=g_2(x, y)} f(x, y, z) \, dz \, dy \, dx$$

where the limits of integration are defined on the boundaries of E.

Example 1: Evaluate the iterated integral $\int_{1}^{4} \int_{1}^{e^2} \int_{0}^{\frac{1}{xz}} \ln z \, dy \, dz \, dx$

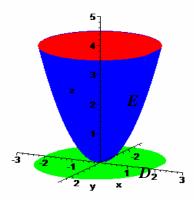
Solution:

Example 2: Evaluate $\iiint_E 2xy$ where *E* lies under the plane x + y + z = 10 and above the region in the *x-y* plane bounded by the curves in the first octant y = 0 and $y = \sqrt{16 - x^2}$.

Solution:

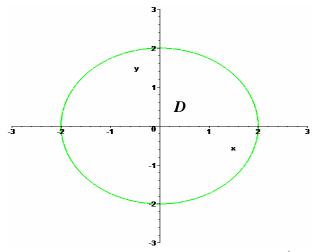
Example 3: Use a triple integral to find the volume of the solid bounded by the graphs of $z = x^2 + y^2$ and the plane z = 4.

Solution: The following graph shows a plot of the paraboloid $z = x^2 + y^2$ (in blue), the plane z = 4 (in red), and its projection onto the x-y plane (in green).



The triple integral $\iiint_E dV$ will evaluate the volume of this surface. In the z direction, the

surface E is bounded between the graphs of the paraboloid $z = x^2 + y^2$ and the plane z = 4. This will make up the limits of integration in terms of z. The limits for y and x are determined by looking at the projection D given on the x-y plane, which is the graph of the circle $x^2 + y^2 = 4$ given as follows:



(continued on next page)

Taking the equation $x^2 + y^2 = 4$ and solving for y gives $y = \pm \sqrt{4 - x^2}$. Thus the limits of integration of y will range from $y = -\sqrt{4 - x^2}$ to $y = \sqrt{4 - x^2}$. The integration limits in terms of x hence range from x = -2 to x = 2. Thus the volume of the region E can be found by evaluating the following triple integral:

Volume of
$$E = \iiint_E dV = \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^4 dz \, dy \, dx$$
. If we evaluate the intermost integral

we get the following:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} dz \, dy \, dx = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} [z] \Big|_{z=x^2+y^2}^{z=4} dy \, dx$$
$$= \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} [4 - (x^2 + y^2)] dy \, dx$$

Since the limits involving y involve two radicals, integrating the rest of this result in rectangular coordinates is a tedious task. However, since the region D on the x-y plane given by $x^2 + y^2 = 4$ is circular, it is natural to represent this region in polar coordinates. Using the fact that the radius r ranges from r = 0 to r = 2 and that θ ranges from $\theta = 0$ to $\theta = 2\pi$ and also that in polar coordinates, the conversion equation is $r^2 = x^2 + y^2$, the iterated integral becomes

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \left[4 - (x^2 + y^2) \right] dy \, dx = \int_{0}^{2\pi} \int_{0}^{2} (4 - r^2) r \, dr \, d\theta$$

Evaluating this integral in polar coordinates, we obtain

(continued on next page)

$$\int_{0}^{2\pi} \int_{0}^{2} (4-r^{2})r dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} (4r-r^{3}) dr d\theta \qquad \text{(Distribute } r\text{)}$$

$$= \int_{\theta=0}^{\theta=2\pi} (2r^{2} - \frac{1}{4}r^{4}) \Big|_{r=0}^{r=2} d\theta \qquad \text{(Integrate)}$$

$$= \int_{\theta=0}^{\theta=2\pi} \left[(2(2)^{2} - \frac{1}{4}(2)^{4}) - 0 \right] d\theta \qquad \text{(Sub in limits of integration)}$$

$$= \int_{\theta=0}^{\theta=2\pi} 4 d\theta \qquad \text{(Simplify)}$$

$$= 4\theta \Big|_{\theta=0}^{\theta=2\pi} \qquad \text{(Integrate)}$$

$$= 4(2\pi) - 4(0) \qquad \text{(Sub in limits of integration)}$$

$$= 8\pi$$

Thus, the volume of *E* is 8π .