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Section 12.7: Triple Integrals 
 

Practice HW from Stewart Textbook (not to hand in) 
p. 879 # 1-19 odd 

 
 
Consider a continuous function of 3 variables f (x, y, z) on the solid bounded region E on 
the 3D plane. 
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We evaluate a triple integral by writing it as an integrated integral. 
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where the limits of integration are defined on the boundaries of E. 
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Example 1: Evaluate the iterated integral ∫ ∫ ∫
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Solution: 
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Example 2: Evaluate ∫∫∫
E

xy2  where E lies under the plane 10=++ zyx  and above the 

region in the x-y plane bounded by the curves in the first octant y = 0 and y = 216 x− . 
 
 
Solution: 
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Example 3: Use a triple integral to find the volume of the solid bounded by the graphs of 
22 yxz +=  and the plane 4=z . 

 
Solution: The following graph shows a plot of the paraboloid 22 yxz +=  (in blue), the 
plane 4=z  (in red),  and its projection onto the x-y plane (in green). 
 

 
The triple integral ∫∫∫

E

dV  will evaluate the volume of this surface. In the z direction, the 

surface E is bounded between the graphs of the paraboloid 22 yxz +=  and the plane 
4=z . This will make up the limits of integration in terms of z. The limits for y and x are 

determined by looking at the projection D given on the x-y plane, which is the graph of the 
circle 422 =+ yx  given as follows: 
 

 
(continued on next page) 
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Taking the equation 422 =+ yx  and solving for y gives 24 xy −±= . Thus the limits of 

integration of y will range from 24 xy −−=  to 24 xy −= . The integration limits in 
terms of x hence range from x = -2 to x = 2. Thus the volume of the region E can be found 
by evaluating the following triple integral: 
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we get the following: 
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Since the limits involving y involve two radicals, integrating the rest of this result in 
rectangular coordinates is a tedious task. However, since the region D on the x-y plane 
given by 422 =+ yx  is circular, it is natural to represent this region in polar coordinates.  
Using the fact that the radius r ranges from 0=r  to 2=r  and that θ  ranges from 0=θ  to 

πθ 2=  and also that in polar coordinates, the conversion equation is 222 yxr += , the 
iterated integral becomes  
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Evaluating this integral in polar coordinates, we obtain 
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Thus, the volume of E is π8 . 
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