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Section 9.7/12.8: Triple Integrals in Cylindrical and Spherical Coordinates
Practice HW from Stewart Textbook (not to hand in)

Section 9.7: p. 689 # 3-23 odd
Section 12.8: p. 887 # 1-11 odd, 13a, 17-21 odd, 23a, 31, 33

Cylindrical Coordinates
Cylindrical coordinates extend polar coordinates to 3D space. In the cylindrical coordinate system, a point P in 3D space is represented by the ordered triple 
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. Here, r represents the distance from the origin to the projection of the point P onto the x-y plane, 
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 is the angle in radians from the x axis to the projection of the point on the x-y plane, and z is the distance from the x-y plane to the point P.
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As a review, the next page gives a review of the sine, cosine, and tangent functions at basic angle values and the sign of each in their respective quadrants.
Sine and Cosine of Basic Angle Values

	
[image: image3.wmf]q

 Degrees
	
[image: image4.wmf]q

 Radians
	
[image: image5.wmf]q

cos


	
[image: image6.wmf]q

sin


	
[image: image7.wmf]q

q

q

cos

sin

tan

=



	0
	0
[image: image8.wmf]
	
[image: image9.wmf]1

0

cos

=


	
[image: image10.wmf]0

0

sin

=


	0

	30
	
[image: image11.wmf]6

p


	
[image: image12.wmf]2

3


	
[image: image13.wmf]2

1


	
[image: image14.wmf]3

3



	45
	
[image: image15.wmf]4

p


	
[image: image16.wmf]2

2


	
[image: image17.wmf]2

2


	1

	60
	
[image: image18.wmf]3

p


	
[image: image19.wmf]2

1


	
[image: image20.wmf]2

3


	
[image: image21.wmf]3



	90
	
[image: image22.wmf]2

p


	0
	1
	undefined

	180
	
[image: image23.wmf]p



 EMBED Equation.3  [image: image24.wmf]
	-1
	0
	0

	270
	
[image: image25.wmf]2

3

p


	0
	-1
	undefined

	360
	
[image: image26.wmf]p

2


	1
	0
	0


Signs of Basic Trig Functions in Respective Quadrants

	Quadrant
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The following represent the conversion equations from cylindrical to rectangular coordinates and vice versa.
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Conversion Formulas

To convert from cylindrical coordinates 
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 to rectangular form (x, y, z) and vise versa, we use the following conversion equations.

From polar to rectangular form: 
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From rectangular to polar form: 
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Example 1: Convert the points 
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Example 2: Convert the point 
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Solution:
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Graphing in Cylindrical Coordinates

Cylindrical coordinates are good for graphing surfaces of revolution where the z axis is the axis of symmetry. One method for graphing a cylindrical equation is to convert the equation and graph the resulting 3D surface.
Example 3: Identify and make a rough sketch of the equation 
[image: image38.wmf]2

r

z

=

.

Solution:
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Example 4: Identify and make a rough sketch of the equation 
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Spherical Coordinates

Spherical coordinates represents points from a spherical “global” perspective. They are good for graphing surfaces in space that have a point or center of symmetry.

Points in spherical coordinates are represented by the ordered triple
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where 
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 is the distance from the point to the origin O, 
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, where is the angle in radians from the x axis to the projection of the point on the x-y plane (same as cylindrical coordinates), and 
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 is the angle between the positive z axis and the line segment 
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Conversion Formulas

To convert from cylindrical coordinates 
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 to rectangular form (x, y, z) and vise versa, we use the following conversion equations.

From to rectangular form: 
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From rectangular to polar form: 
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Example 5: Convert the points (1, 1, 1) and 
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Example 6: Convert the point 
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Example 7: Convert the equation 
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Example 8: Convert the equation 
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Solution: For this problem, we use the equation 
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    is the equation in rectangular coordinates. Doing some algebra will help us see what type of graph this gives.
Squaring both sides gives


The graph of 
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 is a cone shape half whose two parts be found by graphing the two equations 
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(continued on next page)
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Example 9: Convert the equation 
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Solution: For cylindrical coordinates, we know that 
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For spherical coordinates, we let 
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We solve for 
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 using the following steps:
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Triple Integrals in Cylindrical Coordinates

Suppose we are given a continuous function of three variables 
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 expressed over a solid region E in 3D where we use the cylindrical coordinate system.
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Example 10: Use cylindrical coordinates to evaluate 
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Example 11: Use cylindrical coordinates to find the volume of the solid that lies both within the cylinder 
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Solution: Using Maple, we can produce the following graph that represents this solid:
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In this graph, the shaft of the solid is represented by the cylinder equation 
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(Continued on next page)

This is a circle of radius 2. Thus, in cylindrical coordinates, this circle can be represented from r = 0 to r = 2 and from 
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We evaluate this integral as follows:

 
[image: image100.wmf]5

3

20

36

     

          

          

          

0

2

)

5

3

10

(18

      

          

          

          

]

5

3

10

[18

       

          

          

          

)

5

5

)

5

(

 

and

 

27

 

)

9

(

 

(Note

         

 

]

5

3

10

[18

 

 

       

          

          

          

 

]

)

9

(

3

2

)

5

(

3

2

 

[

 

 

       

          

          

          

 

]

)

0

9

(

3

2

)

2

9

(

 

3

2

[

 

 

       

          

          

          

)

-

9

 

let 

 

sub

du 

-

u

 

(Use

       

  

)

9

(

 

3

2

 

 

          

          

          

          

  

 

9

2

 

  

 

          

          

          

          

  

 

)

9

(

)

9

(

 

  

 

          

          

          

          

  

  

 

  

  

  

  

       

  

  

2

0

2

0

2

0

2

2

0

2

2

2

0

2

0

2

2

2

0

2

0

2

2

2

0

2

0

9

9

2

0

2

0

2

0

2

0

9

9

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

2

2

2

p

p

p

q

q

q

q

q

q

q

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

-

=

-

-

=

-

=

=

=

-

=

+

-

=

-

-

-

-

-

=

=

-

-

=

-

=

-

-

-

-

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

-

=

-

-

=

=

=

=

=

=

=

=

=

-

=

-

-

=

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

d

d

d

r

u 

d

r

d

dr

r

r

 

d

dr

r

r

r

 r

d

dr

rz

 

d

dr

dz

r

r

r

r

r

r

r

r

z

r

z

r

r

r

r

r

z

r

z


Thus, the volume is 
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Triple Integrals in Spherical Coordinates
Suppose we have a continuous function 
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Example 12: Use spherical coordinates to evaluate 
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Example 13: Convert 
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Solution: Using the identities 
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The limits with respect to z range from  z = 0 to 
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. Using these results, the integral can be evaluated in polar coordinates as follows:
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