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Section 4.3: Fermat’s Little Theorem
Practice HW (not to hand in)

From Barr Text

p. 284 # 1, 2
As we will see later, the RSA Cryptosystem will require exponentiation to encrypt and decrypt messages. In this section, we review the basics of exponentiation and demonstrate an efficient method for doing exponentiation in modular arithmetic.
Exponential Notation
Recall that exponential notation represents an expression of the form
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where a represents the base of the expression and k represents the exponent. If the exponent k is a positive integer, then
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We illustrate with the following example.

Example 1: Compute 
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Solution: 
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In this section, we want to consider the problem of computing

[image: image7.wmf]m

a

k

  

MOD

 


The next example illustrates a basic computation with his quantity.
Example 2: Compute 
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Solution: 
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The last example illustrates that it is easy to do modular exponentiation when the exponent k is small. However, if the exponent becomes larger, this presents more of a challenge. If we are asked to compute 
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, for example, we should note that 
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which due to size causes errors in computations due to computer round off. Our goal next is to present a method that overcomes this problem.
Note: All laws of exponents in the real number system carry over to MOD arithmetic, except for division.

Laws of Exponents


Real Number System

Modular Number System
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Method of Successive Squaring for computing 
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Idea is to break the exponent k into a sum of powers of 2 (starting with
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) and break 
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 in terms of exponential terms as these powers of 2, computing the powers of 2 by “successively squaring” the previous term.
Example 3: Compute 
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Solution: We first note that the exponent 
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. We first determine the powers of 2 that are less than this exponent. Starting with 
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We can stop at 
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 We now decompose the exponent k into powers of 2.
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We next write
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We next compute the needed powers of 13 needed with respect to the modulus 23. The ones that we will need are indicated by       . Note that arrows are used to indicate the substitutions from the previous step.
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Hence,
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Example 4: Compute 
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Solution: We first note that the exponent 
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. We first determine the powers of 2 that are less than this exponent. Starting with
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We can stop at 
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 We now decompose the exponent k into powers of 2.
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We next write
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We next compute the needed powers of 7 needed with respect to the modulus 41. The ones that we will need are indicated by       . Note that arrows are used to indicate the substitutions from the previous step.
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Note: In Example 4, to compute 
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by ordinary exponentiation, 84 multiplications are required. Using successive squares requires only 9 multiplications.

Fermat’s Little Theorem

Fermat’s Little Theorem in special cases can be used to simplify the process of modular exponentiation. We state it now.

Fermat’s Little Theorem: Let p be a prime number, a an integer where 
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Example 5: Use Fermat’s Little Theorem to calculate the remainder when x is divided by the given divisor m, that is, calculate x MOD m.

a. 
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Solution: For part a, since 31 is prime, then by part 1 of Fermat’s Little Theorem, 
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Fermat’s Little Theorem can be used to simplify integers with large exponents if the modulus is prime. The next example illustrates how this works.
Example 6: Solve the equation 
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Solution: Since 79 is prime, Fermat’s Little Theorem says that 
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