RSA Cryptosystem Setup

1. Choose two “large” primes p and q and compute the quantities 
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2. A positive integer e is chosen where 
[image: image3.wmf]1

)

,

gcd(

=

f

e

. Using 


the Euclidean algorithm, we calculate an integer d where 
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Note that d is the multiplicative inverse of 
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. Here, e will be called the enciphering exponent and d will be called the deciphering exponent.

3. Using an alphabet assignment to convert from English letters to numbers, compute an English plaintext message number
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, we use the enciphering exponent e  to encipher the message by computing
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by successive squaring. Here, Z will be the “secret” message number that will be transmitted from the sender to the recipient of the message. If 
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 into blocks of numbers smaller than m, say 
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4.
To decipher the message, the recipient uses the deciphering exponent d to reverse the process of step 3 by computing 
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or if the cipher-text is in blocks 
[image: image19.wmf]1

Z

, 
[image: image20.wmf]2

Z

, … , 
[image: image21.wmf]r

Z

, we compute


[image: image22.wmf]m

MOD

Z

Y

d

1

1

=

, 
[image: image23.wmf]m

MOD

Z

Y

d

2

2

=

, … , 
[image: image24.wmf]m

MOD

Z

Y

d

r

r

=

.

The alphabet assignment is used to recover the message.

Important Facts Concerning the RSA Cryptosystem
1.
A common place that causes confusion when first learning the RSA is when to use m  and  f  computed in step 1. The integer 
[image: image25.wmf]pq

m

=

 is the modulus used in enciphering and deciphering messages (to compute 
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 is only needed in step 2 and is the modulus needed to find the multiplicative inverse of 
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2.
In practice, the modulus m and enciphering exponent e are made public (everyone knows).

3.
To ensure 
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 exists, a good choice for the enciphering exponent e is a prime number (although it is not necessarily required).
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