Section 2.1: Shift Ciphers and Modular Arithmetic
Modular Arithmetic
In grade school, we first learned how to divide numbers.

Example 1: Consider 
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 . Determine the quotient and remainder and write the result as an equation.

Solution: As you learned in grade school, we set up the following division tableau:
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We write the result of the division as:
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Multiplying both sides of the previous equation by 3 gives
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which simplifies to 

[image: image7.wmf]1

3

13

40

+

×

=

.





█
The previous example illustrates a special case of the division algorithm which we state next. Before stating this algorithm, recall that the integers are the numbers in the following set:
Integers: 
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Division algorithm: Let 
[image: image9.wmf]m

be a positive integer (
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 be any integer. Then there is exactly one pair of integers 
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 (called the quotient) and 
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 (called the remainder) such that
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A number of primary interest in this class will be the remainder 
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 that we obtain the division of two numbers. We will find the remainder so often that we use a special term that is used to describe its computation. This is done in the following definition.
Definition: We say that 
[image: image17.wmf]r

 is equal to 
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, written as 
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, if 
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 is the integer remainder of 
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divided by 
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. We define the variable 
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as the modulus.

Example 2: Determine 25 MOD 7, 31 MOD 5, and 26 MOD 2.

Solution: The following provides the result of each problem with explanation.
25 MOD 7 =  4
since 7 divides into 25 three times (quotient 
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31 MOD 5 =  1
since 5 divides into 31 six times (quotient 
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of 
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26 MOD 2 = 0
since 2 divides into 26 evenly (quotient 
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Note: In the division algorithm, the remainder 
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 is non-negative, that is, 
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 This fact means that when doing modular arithmetic that we will never obtain a negative remainder. To compute 
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correctly, we must always look for the largest number that 
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 evenly divides that is less than 
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. The next example illustrates this fact.
Example 3: Compare computing 23 MOD 9 with  -23 MOD 9.
Solution: To compute 23 MOD 9, we divide 9 into 23 and find the remainder. We look for the largest number less than 23 that 9 divides into. That number is 18. Hence, we see that 9 divides into 23 twice (it divides into 18 two times for a quotient of 
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In contrast, when computing -23 MOD 9, the largest number less than -23 that 9 divides into is -27 (note that -18 is not less than -23). Thus, 9 divides into -23 negative three times (it divides into -27 for a quotient of 
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) with a remainder of 
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 (since -27 + 4 = -23). Hence -23 MOD 9 = 4.
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Doing Modular Arithmetic For Larger Numbers With A Calculator
To do modular arithmetic with a calculator, we use the fact from the division algorithm that
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and solve for the remainder to obtain
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We put this result in division tableau format as follows:
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Example 4: Compute 1024 MOD 37:

Example 5: Compute 500234 MOD 10301

Example 6: Compute -3071 MOD 107

Generalization of Modular Arithmetic
In number theory, modular arithmetic has a more formal representation which we now give a brief description of. This idea can be expressed with the following example.

Example 7: Suppose we want to find a solution 
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to the equation 
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 MOD 7 = 4

The numbers 
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 that give a remainder of 4 MOD 7 represents a congruence class. We define this idea more precisely in the following definition.
Definition: Let 
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 be a positive integer (the modulus of our arithmetic). Two integers 
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 and 
[image: image50.wmf]b

 are said to be congruent modulo 
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Note: The previous definition can be thought of more informally as follows. We say that 
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 give the same integer remainder 
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 when divide by 
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. That is,
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The following example illustrates this idea:

Example 8: Consider the congruence 
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The last example illustrates that when the uppercase MOD notation is used, we are interested in only the specific integer remainder 
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when a number is divided by a modulus. The lowercase mod notation with the 
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 notation is used when we are looking for a set of numbers that have the same integer remainder when divided by a modulus. In this class, we will primarily use the MOD notation.
*Note: When considering 
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, since 
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 This causes the remainders to “wrap” around when performing modular arithmetic. This next example illustrates this idea.
Example 9: Make a table of 
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values for the equation
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Fact: Solving equations (and congruences) if modular arithmetic is similar to solving equations in the real number system. That is, if 
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for any number 
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. The next example makes use of these facts.

Example 10: Make a list of five solutions to 
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Basic Concepts of Cryptography
Cryptography is the art of transmitting information in a secret manner. We next describe some of the basic terminology and concepts we will use in this class involving cryptography.
Plaintext – the actual undisguised message (usually an English message) that we want to send.

Ciphertext – the secret disguised message that is transmitted.

Encryption (encipherment) – the process of converting plaintext to ciphertext.

Decryption (decipherment) – process of converting ciphertext back to plaintext. 
Notation: 
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 represents all possible remainders in a MOD 
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 system, that is,
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For representing our alphabet, we use a MOD 26 system
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and perform a one to one correspondence between the alphabet letters and the elements of this set.
Alphabet Assignment 
Monoalphabetic Ciphers
Monoalphabetic Ciphers are substitution ciphers in which the correspondents agree on a rearrangement (permutation) of the alphabet. In this class, we examine 3 basic types of monoalphabetic ciphers

Types of Monoalphabetic Ciphers
1. Shift Ciphers (covered in Section 2.1)

2  Affine Ciphers (covered in Section 2.2)
3. Substitution Ciphers (covered in Section 2.3)

Shift Ciphers
If 
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 is a numerical plaintext letter, we encipher 
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 by computing the
Enciphering formula for Shift Ciphers
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Here 
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 will be the numerical ciphertext letter.

*Note: 
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 is  called the key of the cipher and represents the shift amount.
Example 11: The Caesar cipher, developed by Julius Caesar
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Figure 1: Julius Caesar
is a shift cipher given by
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Use the Caesar cipher the create a cipher alphabet. Then use it to encipher the message “RADFORD”
Of course, the Caesar cipher is just a special case of a shift cipher with a key of 
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. In a general shift cipher, the key 
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 can be any value in a MOD 26 system, that is, any value in the set 
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. The next example illustrates a more general shift cipher.

Example 12: Encipher the message “SEINFELD” using a 12 shift cipher.
Deciphering Shift Ciphers
Given a key 
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, plaintext letter number 
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, and ciphertext letter number 
[image: image99.wmf]y

, we decipher as follows:
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(subtract 
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 from both sides and simplify)
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(rearrange both sides of the equation)

This gives the

Deciphering formula for shift ciphers
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where 
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 is the numerical ciphertext letter, 
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 is the numerical plaintext letter, and 
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is the key of the cipher (the shift amount).

*Note: In the deciphering shift cipher formula, 
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 MOD 26 can be converted to its equivalent positive form by finding a positive reminder.

The next two examples illustrate how to deciphering process works.

Example 13: Suppose we received the ciphertext “YLUJLQLD” that was encrypted using a Caesar cipher (shift 
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). Decipher this message.

Example 14: Decipher the message “EVZCJZXDFE” that was enciphered using a 17 shift cipher.

Cryptanalysis of Shift Ciphers
As the last two examples illustrate, one must know the key 
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 used in a shift cipher when deciphering a message. This leads to an important question. How can we decipher a message in a shift cipher if we do not know the key 
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? Cryptanalysis is the process of trying to break a cipher by finding its key. Cryptanalysis in general is not an easy problem. The more secure a cipher is, the harder it is to cryptanalyze. We will soon see that a shift cipher is not very secure and is relatively easy to break. 
Methods for Breaking a Shift Cipher
1. 
Knowing 
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a MOD 26 alphabet 
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sense.

2.
Frequency analysis: Uses the fact that the most frequently occurring letters in the 


ciphertext produced by shift cipher has a good  chance of corresponding to the most 


frequently occurring letters in the standard English alphabet. The most frequently 


occurring letters in English are E, T, A, O, I, N, and T (see the English frequency 


table).
We will demonstrate these techniques using Maple.
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