Section 2.2: Affine Ciphers; More Modular Arithmetic
In shift ciphers, messages are encrypted by using an additive key. To increase security, we can, in addition to an additive parameter, encipher messages using a multiplicative parameter. In affine ciphers, the key used for encipherment involves using both a multiplicative and additive parameter. Before describing affine ciphers, we give some necessary mathematics background.

Mathematics Background for Affine Ciphers
All natural numbers (numbers in the set 
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can be expressed as the product of two or more numbers. For example,
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Two numbers that can be multiplied together to get another number are called the factors or divisors of that number. For example,
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Note that the only factors of 7 are 1 and itself. A number with this special type of property is said to be prime, which we formally define next.

Definition: A natural number 
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 is said to be prime if 
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. A natural number that is not prime is said to be composite. 

It can be shown that there are an infinite number of primes. The following set lists the first ten primes:
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The prime numbers provide the building blocks of all numbers. The next theorem illustrates this fundamental fact.

Theorem: The Fundamental Theorem of Arithmetic. Every natural number larger than 1 is a product of primes. This factorization can be done in only one way if is disregarded. 

For example, to factor 30, we can compute
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An elementary way to obtain prime factorizations with small prime factors involves the use of a calculator and a factor tree. The next two examples illustrate this technique.

Example 1: Factor 90

Solution: Using a calculator and the factor tree (the prime factors are the outer leaves), 
[image: image13.png]



we see that 
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Example 2: Factor 935

Solution: Using a calculator and the factor tree (the prime factors are the outer leaves), 
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we see that 
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Greatest Common Divisor

The common prime factors of two numbers can be used to find the greatest common divisor of two numbers, which we define next.

Definition: The greatest common divisor of two natural numbers 
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Elementary Method for Computing the gcd of Two Numbers
Decompose each number into its prime factors. The gcd is obtained by multiplying the prime factors the two numbers have in common. If the two numbers have no common prime factors, then the gcd = 1.

Example 3: Find the gcd(20, 30).

Solution: We first obtain the prime factorizations of 20 and 30 and circle the factors in common.
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The gcd is the product of the common prime factors. Hence, 
[image: image25.wmf]10

5

2

)

30

,

20

gcd(

=

×

=

.    █

Example 4: Find the gcd(1190, 935).

Solution: We again look for the common prime factors.
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Example 5: Find the gcd(15, 26).

Solution: The prime factorizations of 15 and 26 are


[image: image29.wmf]5

3

15

×

=



[image: image30.wmf]13

2

26

×

=


15 and 26 have no common prime factors. Thus, 
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Note: Two numbers 
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Multiplicative Inverses
In the real number system, every non-zero number has a multiplicative inverse – the number you must multiply to a given number to get 1.

Example 6: Fill in the ( ) for 
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 if we are working in the real number system.
Solution: In each case, we are looking for a multiplicative inverse. Hence,
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(We say 
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Note: In some number systems, multiplicative inverses in most cases do not exist.

Example 7: Consider the integers 
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. If we attempt to solve 
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Note: In the modular arithmetic system, a multiplicative inverse may or may not exist, depending on the following fact involving the gcd:
*Fact:  If the 
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Example 8: Does 8 have an inverse with respect to the modulus 26?

Solution: No, 
[image: image55.wmf]1

8

-

 MOD 26 does not exist since 
[image: image56.wmf]1

2

)

26

,

8

gcd(

¹

=

.


█
Example 9: Does 9 have and inverse with respect to the modulus 26?

Solution: Yes, 9 does have an inverse MOD 26 since 
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Later in the course, we will see a general mathematical method for computing multiplicative inverses. For now, since we will work with a MOD 26 system, we will display a table showing the numbers in a MOD 26 with their multiplicative inverses:
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	7
	9
	11
	15
	17
	19
	21
	23
	25
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	1
	9
	21
	15
	3
	19
	7
	23
	11
	5
	17
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Table 1: Multiplicative Inverses MOD 26

Example 10: Use Table 1 to find 
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Solution: Table 1 shows that 
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 MOD 26 = 15. Note that we can prove this by calculating (7)(15) MOD 26 = 105 MOD 26 = 1.
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Multiplicative inverses expand our ability to solve equations and congruences in modular arithmetic. This is made possible using the multiplicative property of modular arithmetic, which we state next.
Multiplicative Property for Modular Arithmetic
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We illustrate how this property can be used in the following example.

Example 11: Solve 
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Solution: Just like in your regular algebra class, the goal is to isolate 
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(Add 1 to both sides)
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(From the inverse table we see that 
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Multiplicative inverses in modular arithmetic can be useful in solving systems of linear equations, which are useful for cryptanalysis. This next example illustrates this fact.
Example 12: Suppose we want to solve the system of equations (congruences)
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Our goal is to find the values of a and b that simultaneously solve this system of equations. The process is similar to how systems of equations are solved in ordinary algebra. To keep track of our steps, we first number the equations


[image: image85.wmf]26

mod

18

8

º

+

b

a



(1)


[image: image86.wmf]26

mod

11

17

º

+

b

a



(2)

To eliminate the parameter b, we subtract equation (2) from equation (1):
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Noting from the MOD 26 multiplicative inverse table that 
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Mathematical Description of Affine Ciphers
Given 
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Here, the key is made up of a multiplicative parameter 
[image: image110.wmf]a

 and an additive parameter 
[image: image111.wmf]b

.
The next example illustrates how a message is enciphered.

Example 13: Encipher “RADFORD” using the affine cipher 
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Solution: Using the MOD 26 alphabet assignment table, we encipher the message by computing 
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Hence, the ciphertext is “LETDWLT”
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Note: Recall that for an affine cipher 
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Example 14: Suppose we consider the affine cipher 
[image: image122.wmf])

1

2

(

+

=

x

y

 MOD 26. Note that 
[image: image123.wmf]2

=

a

 and 
[image: image124.wmf]1

2

)

26

,

2

gcd(

¹

=

. Suppose we want to encipher the message “AN”. Enciphering gives

[image: image125.wmf]B

MOD

MOD

MOD

y

x

A

Þ

=

=

+

=

+

=

Þ

=

Þ

1

26

1

26

)

1

0

(

26

)

1

)

0

(

2

(

0



[image: image126.wmf]B

MOD

MOD

MOD

y

x

N

Þ

=

=

+

=

+

=

Þ

=

Þ

1

26

27

26

)

1

26

(

26

)

1

)

13

(

2

(

13


The two letters A and N both encipher to the same letter B. If a sender was to transmit this message to a recipient, the recipient will not be able to decipher the message uniquely, which is not desirable.
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Deciphering an Affine Cipher
For an affine cipher 
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(Cancel and simplify)
Hence, 
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 MOD 26 is the decipherment formula for affine ciphers. We illustrate this formula with an example.

Example 15: Decipher the message “ARMMVKARER” that was encrypted using the affine cipiher 
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Solution: Recall here that x is the numerical representation of the plaintext letter and y is the numerical representation of ciphertext letter. To decipher, we must solve equation (*) for x. We do this using the following steps:
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NOTE: In MOD arithmetic the division operation 
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Using the decipherment formula 
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Hence, the message is “HELLO THERE”.
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Cryptanalysis of Affine Ciphers
For an affine cipher 
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 MOD 26, an enemy must know the multiplicative parameter
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 and additive parameter
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 in order to decipher and break a message. Once 
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 MOD 26 can be computed and the message broken. Two methods of attack can be used to attempt to break an affine cipher.

Methods for Breaking and Affine Cipher

1. 
Exhaustion. Note there are 12 possible multiplicative parameters 
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 pairs to test.
2.
Frequency analysis. Quicker way which involves matching to highly frequently occurring ciphertext letters with two highly frequently occurring plaintext letters. Involves solving a system of equations MOD 26.

The next example illustrates method 2.

Example 16: Suppose we receive a ciphertext that was enciphered using an affine cipher. After running a frequency analysis on the ciphertext, we find out that the most highly frequently occurring letters in the ciphertext are W and J. Assuming that these letters correspond to E and T respectively, find the parameters 
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 and 
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Solution: Recall that for an affine cipher 
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 is the numerical representation of the plaintext letter and 
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 is the numerical representation of the ciphertext letter. Hence, using the MOD 26 alphabet assignment  and the equation 
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Plaintext 
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Plaintext 
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Rearranging and putting these equations together gives
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To find 
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, we must solve this system of equations.

To eliminate the parameter b, we subtract equation (2) from equation (1):
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Since 
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, we can write the resulting equation from the subtraction as:
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We next solve this result by multiplying both sides by 
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Noting from the MOD 26 multiplicative inverse table that 
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Subtracting 52 from both sides gives
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   solve the above system of equations.
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