PAGE  
3

Section 2.1: Basic Properties of Sets

Practice HW from Mathematical Excursions Textbook (not to hand in)

p. 61 # 1-83 odd
Basic Concepts of Sets
Definition: A set is a collection or groups of objects.
Examples of Sets 
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Fact: The members of a set are called elements.

Notation: 
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 means an object is an element of set.
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 means an object is not an element of set.

Example 1: Determine if the numbers 1, 13, and 14 are elements of the set 
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Solution:
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Example 2: Determine if the letters b, m, and Y are elements of the set
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Note: The empty set is the set with no elements.

Notation for empty set: 
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Basic Number Sets

Natural Numbers or Counting Numbers: 
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Whole Numbers: 
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Integers: 
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Rational Numbers: 
Q = 
the set of all terminating numbers or repeating decimals, that is
the set of numbers of the form 
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Irrational Numbers:  J =  the set of all numbers that are not a terminating number or 

repeating decimal (not rational)
Real Numbers: R =  the set of all rational numbers or irrational numbers
Ways of Describing Sets
1. 
Roster Form: When the elements of the set are written out inside a pair of braces.

The sets 
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 are examples of sets in roster form.

Example 3: In roster form, write the set of people on the US dollar bills for the set of bills less than or equal to $100.

Solution:
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Example 4: In roster form, write the set of whole numbers less than 8
Solution:
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Example 5: Write the set of integers x that satisfy 
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Solution:
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Example 6: Write the set of natural numbers x that satisfy 
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Solution:
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2. Verbal Description of Sets: describe set in words
Example 7: Write a description of the set 
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Example 8: Write a description of the set 
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Solution: Here, this set is read as the set of x such that x is a natural number (counting number) that is less than 5. We can easily write the elements of this set, which in roster form is 
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3. Set-Builder Notation: Uses a short hand notation to describe sets, usually large ones

    Notation is given by the form
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     (Read as the set of x such that x is …)
Example 9: Use set-builder notation to write the set 
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Example 10: Use set-builder notation to write the set 
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Solution: One solution could be 
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Well Defined Set

A set is well defined is the elements of the sets are clearly defined, that is, if it is obvious what elements belong it. If a set is well defined, then there should not be any confusion of what the elements are in the set.
Examples of well defined sets: 
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Examples of sets that are not well defined: The set nice people, 
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Cardinality of a Set

The cardinality of a finite set A, denoted by 
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, is the number of elements in that set.

Example 11: Determine cardinality of the set
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Example 12: Determine cardinality of the set B of countries that border the USA.
Solution:
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Equal and Equivalent Sets

Set A is equal to set B, denoted by 
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Set A is equivalent  to set B, denoted by 
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Note: The order that the elements of a set are listed does not matter. If the elements are the same, the sets are equal. Also, each element of a set is listed just once. The elements of a set in general are not repeated.
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Example 13: Determine whether the sets 
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Solution:
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Example 14: Determine whether the sets 
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Solution: Since the sets have the same number of elements (in this case 3), they are equivalent sets. However, the elements are not the same. Thus, they are not equal.
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Example 15: Determine whether the sets 
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