Chapter 14: Hints and Solutions to Selected Exercises p. 99
Exercise 14.1

If m is odd, convince yourself that the following geometric series is true:
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Thus for any base a, setting x = a and n = m should convince you that 
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 cannot be prime if n is odd. If n is not a power of 2, then n must have an odd factor, that is, 
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, where k is an integer and m is an odd number. Using this, rewrite 
[image: image4.wmf]1

+

n

a

 and use some simple exponent manipulation to show using the geometric series formula above that 
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 will be composite, thus producing a contradiction.

Exercise 14.3
a. 
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, which is prime.

b. 
If n is even, then 
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 for some integer k. Then 
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induction on this quantity. The base case (k = 1) is trivial. If 
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for the integer k, then 
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The induction hypothesis proves the result.

c.
Use a similar approach to part (b) and prove the resulting expression is divisible by 


11.
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