Chapter 6 – Additional Exercises

1. Find a solution in integers to the following equations:

a. 1479x + 272 y = gcd(1479, 272)


b. 142785821x + 1320979y = gcd(142785821, 1320979) 


c. 320827x + 1101143y = gcd(320827, 1101143)

2.
Describe all integer solutions to each equation in exercise # 1.

3.
Show that the gcd(n, n+1) = 1 for every integer n. 
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 and form a linear combination between a and b and recall the fact about what linear combination the gcd represents. To show 
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