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For instance, to show that 
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 has no divisor larger than 1, assume that a and b have a common prime divisor p. Then 
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 for some integer v. Hence
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Thus, 
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. Hence, the prime divisibility property says that 
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. This contradicts that hypothesis in the Primitive Pythagorean Triple’s Theorem that 
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. A similar argument can be used to show that 
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. Thus a and b have no common divisors larger than 1, that is 
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Now, use as a similar type of argument to show that 
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Exercise 7.4b

1. First, 
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2. Assume true for 
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   (use induction hypothesis).
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Hence, 
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 is true. Thus, by induction,
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is true.
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