Chapter 7 – Additional Exercises

1.
Factor the following integers into a product of primes.

a. 1080

b. 1776

c. 603911

2.
Prove that if p and is prime, then (look at the prime divisibility property)
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3.
Prove that 
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Hint: If 
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, then a and b have no common prime factors. What does that say about 
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4.
If 
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Hint: This problem uses some techniques we saw back in the first textbook exercise back in Chapter 2. Suppose 
[image: image18.wmf]a

|

3

/

. Then 
[image: image19.wmf]1

3

+

=

k

a

 or 
[image: image20.wmf]2

3

+

k

. Use this and try and contradict the hypothesis 
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5.
If 
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Let 
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 be c’s prime decomposition. Then 
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You can split the prime factor squares, giving some to a and the rest of b. What allows you do to this? 
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